Removal of Copper Ions from Wastewater by Ion Exchange Resin Using Pulsation Technique

2020 ◽  
Vol 1008 ◽  
pp. 191-201
Author(s):  
Esraa Hashem Abd El-Halim ◽  
Dina Ahmed El-Gayar ◽  
Hasan Farag

The rate of removal of heavy metal Copper ion (Cu 2+) from synthetic wastewater was studied using an ion exchange resin and pulsation technique. Variables examined were initial concentration of (Cu 2+), ratio of mass of resin to solution liquid volume, frequency, amplitude and geometry of the disc responsible for the pulsation motion. The results were presented mathematically by using the dimensionless analysis and the mass transfer correlation was obtained also Langmuir and Freundlich adsorption isotherms were examined where the date fits Freundlich adsorption isotherms more than Langmuir adsorption isotherms. It is concluded that percentage of (Cu 2+) removal decreases as initial concentration of (Cu 2+) presented increases and increases with contact time, frequency (rpm), amplitudes and mass of resin per unit volume of solution.

Author(s):  
Людмила Сергеевна Авфукова

Статья посвящена одному из современных методов и технологий извлечения никеля, кобальта и меди из многокомпонентных растворов - сорбционный метод. В качестве сорбентов выступают ионообменная смола КУ-2-8 и хелатообразующие смолы. Рассмотрен один изметодов удаления веществ, сопутствующих, мешающих извлечению ценных компонентов, одним из которых является железо. The paper considers one of the modern methods and technologies of nickel, cobalt and copper recovery from multicomponent solutions; that is a sorption method. KU-2-8 ion exchange resin and chelating resins are present as sorbents. One of the method of substances which prevent removing valuable components is discussed. One of such substance is considered to be iron.


2016 ◽  
Vol 32 (4) ◽  
pp. 129-140 ◽  
Author(s):  
Agnieszka Bożęcka ◽  
Monika Orlof-Naturalna ◽  
Stanisława Sanak-Rydlewska

Abstract Industrial waste solutions may contain toxic Pb, Cu, Cd and other metal ions. These ions may also be components of leachates in landfills of ores. The toxicity of the ionic forms of these metals is high. For this reason the paper presents the results of studies on one of the methods to reduce their concentration in aqueous solutions. The article presents the results of studies on the removal of Pb2+, Cd2+ and Cu2+ ions from model aqueous solutions with synthetic ion exchange resin C 160 produced by Purolite. The investigated ion exchanger contains sulfonic acid groups (-SO3H) in its structure and is a strongly acidic cation-exchange resin. The range of the studied initial concentrations of the Pb2+, Cd2+ and Cu2+ ions in the solutions was from 6.25 mg/L to 109.39 mg/L. The results confirmed that the used ion exchange resin C160 efficiently removes the above-mentioned ions from the studied solutions. The highest degree of purification was achieved in lead solutions for the assumed range of concentrations and conditions of the ion exchange process. It reached 99.9%. In the case of other solutions, the ion exchange process occurs with lower efficiency, however it remains high and amounts to over 90% for all the ions. The results of research were interpreted on the basis of the Langmuir adsorption model. For each studied ion, sorption capacity of the ion exchange resin increases until the saturation and equilibrium state is reached. Based on the interpretation of the Langmuir equation coefficients, an indication can be made that the studied ion exchange resin has a major sorption capacity towards the copper ions. In their case, the highest value of constant qmax was obtained in the Langmuir isotherm. For Cu2+ ions it was 468.42 mg/g. For Pb2+ and Cd2+ ions, this parameter reached the values of 112.17 mg/g and 31.76 mg/g, respectively. Ion exchange resin C 160 shows the highest affinity for the Pb2+ ions. In this case, the achieved value of coefficient b is highest and equals 1.437 L/mg.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2068
Author(s):  
Yu-Chi Wu ◽  
Yu-Hong Wei ◽  
Ho-Shing Wu

Dowex® HCR-S ion-exchange resin was used to adsorb ectoine in a batch system under varying operation conditions in terms of contact time, temperature, pH value, initial concentration of ectoine, and type of salt. Six adsorption isotherm models (Langmuir, Freundlich, Temkin, Dubinin–Radushkevich, Sips, and Redlich–Peterson) and three kinetic models (pseudo-first-order, pseudo-second-order, and intraparticle diffusion) were used to investigate the ectoine adsorption mechanism of ion-exchange resin. According to the experimental results, the mechanism of ectoine adsorption using an ion exchanger includes the ion-exchange reaction and physisorption. Both the Langmuir and Freundlich models were found to have a high fitting. For the kinetic analysis, the pseudo-second-order and intraparticle diffusion models were suitable to describe the ectoine adsorption. Dowex® HCR-S resin has an average saturated adsorption capacity of 0.57 g/g and 93.6% of ectoine adsorption at 25~65 °C, with an initial concentration of 125 g/L. By changing the pH of the environment using NaOH solution, the adsorbed ectoine on the ion-exchange resin can be desorbed to 87.7%.


2016 ◽  
Vol 52 ◽  
pp. 171-176
Author(s):  
M. Palkina ◽  
O. Metlitska

The aim of the research – adaptation, optimization and using of existing DNA extraction methods from bees’ biological material with the reagent «Chelex-100" under complex economic conditions of native laboratories, which will optimize labour costs and improve the economic performance of DNA extraction protocol. Materials and methods. In order to conduct the research the samples of honey bees’ biological material: queen pupae exuviae, larvae of drone brood, some adult bees’ bodies (head and thorax) were selected. Bowl and drone brood were obtained from the experimental bee hives of Institute of Apiculture nd. a. P. I. Prokopovich of NAAS. DNA extraction from biosamples of Apis mellifera ssp. was carried out using «Chelex-100®» ion exchange resin in different concentrations and combinations. Before setting tests for determination of quantitative and quality indexes, dilution of DNA samples of the probed object was conducted in ratio 1:40. The degree of contamination with protein and polysaccharide fractions (OD 260/230), quantitative content of DNA (OD 260/280) in the extracted tests were conducted using spectrophotometer of «Biospec – nano» at the terms of sample volume in 2 µl and length of optical way in 0,7 mm [7]. Verification of DNA samples from biological material of bees, isolated by «Chelex-100®», was conducted after cold keeping during 24 hours at 20°C using PСR with primaries to the fragment of gene of quantitative trait locus (QTL) Sting-2 of next structure [8]:  3' – CTC GAC GAG ACG ACC AAC TTG – 5’; 3' – AAC CAG AGT ATC GCG AGT GTT AC – 5’ Program of amplification: 94 °C – 5 minutes – 1 cycle; 94 °C – 1 minute, 57°C – 1 minute, 72 °C – 2 minutes – 30 cycles; elongation after 72°C during 2 minutes – 1 cycle. The division of obtained amplicons was conducted by gel electrophoresis at a low current – 7 µÀ, in 1,5 % agarose gel (Sigma ®) in TAE buffer [7]. The results. At the time of optimization of DNA isolation methods, according to existing methods of foreign experts, it was found optimal volume of ion exchange resin solution was in the proposed concentration: instead of 60 µl of solution used 120 µl of «Chelex-100®», time of incubation was also amended from 30 minutes to 180 minutes [9]. The use of the author's combination of method «Chelex-100®» with lysis enzymes, proteinase K and detergents (1M dithiothreitol), as time of incubation was also amended, which was reduced to 180 minutes instead of the proposed 12 hours [10]. Changes in quality characteristics of obtained DNA in samples after reduction in incubation time were not found. Conclusions. The most economical method of DNA isolation from bees’ biological material is 20% solution of «Chelex-100» ion exchange resin with the duration of the incubation period of 180 minutes. It should also be noted that the best results can be obtained from exuviae, selected immediately after the queen’s exit from bowl, that reduces the likelihood of DNA molecules destruction under the influence of nucleases activation, but not later than 12 hours from release using the technology of isolated obtain of queens.


1977 ◽  
Vol 49 (6) ◽  
pp. 764-766 ◽  
Author(s):  
Toshihiko. Hanai ◽  
Harold F. Walton

Sign in / Sign up

Export Citation Format

Share Document