Effect of Milling Parameters on the Structural, Microstructural and Physical Properties of Alumina-Titania-Graphite Nanocomposite

2020 ◽  
Vol 1010 ◽  
pp. 200-205
Author(s):  
Farah Wahida Ismail ◽  
Mohd Hasmizam Razali ◽  
Nik Nurul Anis Nik Yusoff ◽  
Mahani Yusoff

Al2O3-TiO2-graphite nanocomposite can be used as alternative material for coating application. Fine composite coating particles is commonly produced by milling in a high energy ball milling. This study focused on evaluate the effects on the structural, microstructural and physical properties of Al2O3-TiO2-graphite nanocomposite. The alumina, titania and graphite powder were milled in a planetary ball mill at 2, 4, 8 and 10 h and 200, 250 and 300 rpm. The composite particles was compacted for green density determination. The phase analysis and microstructure of nanocomposite were characterized using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Increasing milling time and milling speed contributes to a small solubility between Al2O3 and TiO2. Increasing milling time and speed decreased the Al2O3 crystallite and internal strain increased as a result of continuous impact on the powder and repeated collision between powder and the wall container. Higher milling time and speed produce finer and flaky shape of Al2O3-TiO2-graphite particles which then affects the green density of the composite.

2010 ◽  
Vol 660-661 ◽  
pp. 701-706
Author(s):  
Helio R. Simoni ◽  
Eduardo Saito ◽  
Claudinei dos Santos ◽  
Felipe Antunes Santos ◽  
Alfeu Saraiva Ramos ◽  
...  

In this work, the effect of the milling time on the densification of the alumina ceramics with or without 5wt.%Y2O3, is evaluated, using high-energy ball milling. The milling was performed with different times of 0, 2, 5 or 10 hours. All powders, milled at different times, were characterized by X-Ray Diffraction presenting a reduction of the crystalline degree and crystallite size as function of the milling time increasing. The powders were compacted by cold uniaxial pressing and sintered at 1550°C-60min. Green density of the compacts presented an increasing as function of the milling time and sintered samples presented evolution on the densification as function of the reduction of the crystallite size of the milled powders.


2012 ◽  
Vol 727-728 ◽  
pp. 206-209
Author(s):  
Osvaldo Mitsuyuki Cintho ◽  
H.I. Tsai ◽  
M. Bär ◽  
M. de Castro ◽  
E.F. Monlevade ◽  
...  

High energy ball milling has been used like alternative route for processing of materials. In the present paper, the reduction of tungsten oxide by aluminum in order to obtain metallic tungsten was studied using a SPEX type high energy mill. A powdered mixture of WO3and metallic aluminum, weighed according to the stoichiometric proportion with an excess 10% Al, was processed with hardened steel utensils using a 1:6 powder-to-ball ratio. The processing was carried out with milling jar temperature measurement in order to detect the reaction type. The temperature evaluation indicated the self-propagating reaction occurrence by fast increase of the jar temperature after a short milling time. The tungsten oxide reduction was verified by X-Ray Diffraction (XRD) analysis and the milling products were characterized by Scanning Electron Microscopy (SEM). The results were slightly different from the literature due to the mill type and milling parameters used in the work.


2007 ◽  
Vol 353-358 ◽  
pp. 1625-1628 ◽  
Author(s):  
Gen Shun Ji ◽  
Qin Ma ◽  
Tie Ming Guo ◽  
Qi Zhou ◽  
Jian Gang Jia ◽  
...  

The high energy ball milling of Ni-50 atom % Si elemental powder mixtures was carried out using a planetary mill. X-ray diffraction (XRD) was used to identify the phase evolutions during the high energy ball milling period. The microstructure morphology of the powders milled different time was determined by field emission scanning electron microscope (FESEM). The beginning time of mechanical alloying was determined by back scattered electrons (BSE) images. The XRD patterns showed that the nickel peaks intensity and the silicon peaks intensity obviously decreased with milling time increased to 1 hour. BSE images revealed that nickel and silicon powders were not blended uniformly for 1 hour of milling. It was found that NiSi formed as the milling time increased to 5 hours, simultaneously, the nickel peaks and the silicon peaks almost disappeared. That means the obvious mechanical alloying started from 5 hours of milling. BSE images agreed with the result analyzed from XRD patterns. With the milling time further increased from 10 to 75 hours, the NiSi peaks decreased gradually, at the same time, the Ni2Si peaks appeared and then increased gradually.


2006 ◽  
Vol 510-511 ◽  
pp. 698-701
Author(s):  
Pyuck Pa Choi ◽  
Young Soon Kwon ◽  
Ji Soon Kim ◽  
Dae Hwan Kwon

Mechanically induced crystallization of an amorphous Fe90Zr10 alloy was studied by means of X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Under high-energy ball-milling in an AGO-2 mill, melt-spun Fe90Zr10 ribbons undergo crystallization into BCC α- Fe(Zr). Zr atoms are found to be solved in the Fe(Zr) grains up to a maximum supersaturation of about 3.5 at.% Zr, where it can be presumed that the remaining Zr atoms are segregated in the grainboundaries. The decomposition degree of the amorphous phase increases with increasing milling time and intensity. It is proposed that the observed crystallization is deformation-induced and rather not attribute to local temperature rises during ball-collisions.


2018 ◽  
Vol 54 ◽  
pp. 136-145
Author(s):  
A. El Mohri ◽  
M. Zergoug ◽  
K. Taibi ◽  
M. Azzaz

Nanocrystalline Fe90Mg10 alloy samples were prepared by mechanical alloying process using planetary high energy ball mill. The prepared powders were characterized using differential thermal analysis (DTA), X-ray diffraction technique (XRD) at high temperature, transmission electron microscopy (TEM), and the vibrating sample magnetometer (VSM). Obtained results are discussed according to milling time. XRD at high temperature results also indicated that when the milling time increases, the lattice parameter and the mean level of grain size increase, whereas the microstrains decrease. The result of the observation by the TEM of the Fe-Mg powders prepared in different milling time, coercive fields derived and Saturation magnetization derived from the hysteresis curves in high temperature are discussed as a function of milling time.


2011 ◽  
Vol 319-320 ◽  
pp. 61-63 ◽  
Author(s):  
Xiu Yan Guo ◽  
Guo Jin Ma ◽  
Shi Kun Xie ◽  
Rong Xi Yi ◽  
Zhi Gao

Cu-4% mixed-powder consisting of rough copper powder and graphite powder was separately mechanical alloyed by high-energy ball milling. The phases and micrograph of these powders were determined by X-ray diffraction and scanning electron microscopy (SEM). The results show an increase in the lattice parameter of copper with milling times, up to a saturation value of about 24h; There was an absence of graphite reflections from X-ray diffractograms after longer milling times.


2016 ◽  
Vol 38 ◽  
pp. 107-113
Author(s):  
Maya Radune ◽  
Michael Zinigrad ◽  
Nachum Frage

Taguchi’s method was applied to investigate the effect of the main HEBM parameters: milling time (MT), ball to powder weight ratio (BPWR) and milling speed (MS) on the dissolved AlN fraction in TiN. The settings of HEBM parameters were determined by using the orthogonal experiments array (OA). The as-received and milled powders were characterized by X-ray diffraction (XRD). The optimum milling parameter combination was determined by using the analysis of signal-to-noise (S/N) ratio. According to the analysis of variance (ANOVA) the milling speed is the most effective parameter and the optimal conditions for powder synthesis are: MT 20h, MS 600rpm, BPWR 50:1. The result of the experiment conducted under optimal conditions (AlN was completely dissolved during experiment) confirmed the conclusions of the statistical analysis.


2008 ◽  
Vol 22 (18n19) ◽  
pp. 2955-2961 ◽  
Author(s):  
MARYAM SALARI ◽  
MASIH REZAEE ◽  
S. M. MOUSAVI KOIE ◽  
P. MARASHI ◽  
H. ABOUTALEBI

Titanium dioxide nanoparticles have great potential for use in photocatalytic applications, cosmetics, white pigments and so on. In this paper, the effect of milling time on particle size, morphology and phase composition of TiO 2 nanoparticles, prepared by mechanochemical method, was investigated by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). TiO 2 nanoparticles were prepared by the use of high energy ball milling of titanyl sulphate ( TiOSO 4) and NaCl powders as the starting mixture in different milling durations. The milled powder was annealed at 700°C for 30 min. The NaCl powder, used as the diluent phase, was removed by washing the annealed powder with distilled water. It was found that with increasing milling time, decrease in the size of equiaxed spherical particles and increase in temperature of anatase to rutile transformation ( A → R ) can be observed.


2011 ◽  
Vol 26 (3) ◽  
pp. 267-272 ◽  
Author(s):  
J. M. Loureiro ◽  
A. C. Batista ◽  
V. A. Khomchenko ◽  
B. F. O. Costa ◽  
G. Le Caër

Order-disorder transformations were studied in annealed and high-energy ball-milled near-equiatomic FeCo alloys. X-ray diffraction with Co Kα radiation enables to follow disordering with milling time because of anomalous dispersion.


2017 ◽  
Vol 47 ◽  
pp. 79-88 ◽  
Author(s):  
Z. Hamlati ◽  
W. Laslouni ◽  
Mohammed Azzaz ◽  
M. Zergoug ◽  
D. Martínez-Blanco ◽  
...  

Ternary Fe72Al26Sn2 and Cu70Fe18Co12 alloys were obtained by mechanical alloying of pure Fe, Al, Sn, Cu and Co powders using a high energy ball mill. X-ray diffraction and electron microscopy supported by magnetic measurements have been applied to follow changes in the microstructure, phase composition and magnetic properties in dependence on milling time. With the increase of milling time all Al and Sn atoms dissolved in the bcc Fe and the final product of the MA process was the nanocrystalline Fe (Al, Sn) solid solution in a metastable state with a large amount of defects and mean crystallite size of 5 nm. However, the obtained crystallite size value is about 10 nm for the ball milled Cu70Fe18Co12 powders. The electron microscope observations show the morphology of powder particles. Magnetic properties of the nanocrystalline mechanically alloyed FeAlSn and CuFeCo were also investigated and were related to the microstructural changes.


Sign in / Sign up

Export Citation Format

Share Document