PrFeB Based Alloys Obtained by Melt Spinning for the Production of Permanent Magnets

2020 ◽  
Vol 1012 ◽  
pp. 314-318
Author(s):  
Marco Antonio Meira ◽  
Lucas Costa Moisés ◽  
Melissa Rohrig Martins da Silva ◽  
Susilene Real Janasi ◽  
Hidetoshi Takiishi

Rare earth permanent magnets are essential components in many fields of technology due to their excellent magnetic properties. There are some techniques used in the manufacture of permanent rare earth magnets: the powder metallurgy to obtain anisotropic HD sintered permanent magnets and the melt spinning and HDDR processes to obtain isotropic and anisotropic bonded permanent magnets. In this work, the influence of the melt spinning parameters on the microstructural and magnetic properties of the Pr14FebalCo16B6 alloy was studied. The alloy was melted and rapidly cooled at 9.9 x 105°C/s. The parameters used in the process were: wheel speed of 15 m/s and 20 m/s and ejection pressure of 25.3 kPa and 50.7 kPa. Ribbons and/or flakes of 30 μm thickness and width until 5 mm were obtained. Results show that the melt spinning alloys are nanocrystalline and that the parameters of the process influence the microstructure and their magnetic properties. Mean crystallite size up to 38.5 nm and intrinsic coercivity (iHc) up to 254 kA/m were obtained.

2014 ◽  
Vol 789 ◽  
pp. 28-31 ◽  
Author(s):  
He Wei Ding ◽  
Chun Xiang Cui ◽  
Ji Bing Sun

(Pr0.25Nd0.75)10-xDyxFe82Co2B6(x=0~0.3) ribbons were prepared by melt spinning at 25m/s and subsequent annealing. The effect of Dy content on the microstructure and magnetic properties of the ribbons has been investigated by X-ray diffractometer (XRD), scanning electronic microscope (SEM) and vibrating sample magnetometer (VSM). The magnetic properties related to the Dy content were characterized. Intrinsic coercivity of 598kA/m, remanence of 0.58T, and the maximum energy product (BH)max of 43kJ/m3 were achieved in (Pr0.25Nd0.75)9.8Dy0.2Fe82Co2B6 after annealing at 700°C for 10 minutes.


2012 ◽  
Vol 516 ◽  
pp. 73-77 ◽  
Author(s):  
Bicheng Chen ◽  
Xingmin Liu ◽  
Renjie Chen ◽  
Shuai Guo ◽  
Don lee ◽  
...  

2016 ◽  
Vol 848 ◽  
pp. 709-714 ◽  
Author(s):  
Gang Fu ◽  
Jiang Wang ◽  
Mao Hua Rong ◽  
Guang Hui Rao ◽  
Huai Ying Zhou

The rare-earth (RE) permanent magnets based on Nd2Fe14B with excellent magnetic properties have been widely used in industrial applications. In this work, the crystal structure, microstructure and magnetic properties of Nd2.28Fe13.58B1.14, Ce2.28Fe13.58B1.14 and Pr2.28Fe13.58B1.14 alloys prepared by arc-melting were investigated. The results show that all alloys are single phase with tetragonal Nd2Fe14B-type (space group P42/mnm). The Curie temperatures (Tc) of RE2.28Fe13.58B1.14 (RE=Nd, Ce, Pr) alloys are 583 K, 423 K and 557 K, respectively. On the other hand, the coercivities of Nd2.28Fe13.58B1.14 and Pr2.28Fe13.58B1.14 alloys are about 1.05 T and 1.23 T, respectively, while that of Ce2.28Fe13.58B1.14 alloy is only about 0.25 T due to the poor squareness of hysteresis loop. Meanwhile, the saturation magnetizations of Nd2.28Fe13.58B1.14 and Pr2.28Fe13.58B1.14 alloys are about 135 emu/g and 113 emu/g, respectively, while that of Ce2.28Fe13.58B1.14 alloy is about 97 emu/g. It was indicated that the Curie temperatures and magnetic properties of RE2.28Fe13.58B1.14 alloys with the same crystal structure are dependent on light rare earth elements.


1990 ◽  
Author(s):  
C.H. Lin ◽  
Y.M. Jean ◽  
C.J. Chen ◽  
T.Y. Liu ◽  
H.C. Kung ◽  
...  

Author(s):  
Zongjun Tian ◽  
Shangdong Li ◽  
Youwei Du ◽  
Yinhui Huang

The effect of indium additions on the microstructures and magnetic properties of Nd9Fe85−xB6Inx (x = 0–2) nanocomposites prepared by melt spinning was investigated. It was found that a certain amount of indium added to Nd9Fe85B6 magnets enhances the hard magnetic properties. The coercivity and remanence ratio of the magnet with 0.5 at.% indium increases from 405kA/m (no indium) to 465kA/m and from 0.7 to 0.86 respectively. Squareness of its hysteresis loop is also improved greatly. The optimum energy product (BH)max increases remarkably from 95kJ/m3 to 145kJ/m3. The origin for those enhancements is mainly attributed to the magnetically softened grain boundaries and enhanced crystallographical coherency by indium addition. The magnetic annealing is found to be helpful to enhance the coherency and coupling between hard and soft phases.


Sign in / Sign up

Export Citation Format

Share Document