Magnetic and Mechanical Properties of Fe-Cr-Si-Mo Alloys by MIM Process

2021 ◽  
Vol 1016 ◽  
pp. 685-690
Author(s):  
Masahiro Kimura ◽  
Toru Shimizu ◽  
Hisaki Watari

In recent years, metal injection molding (MIM) has been adopted as a process for manufacturing a solenoid valve which is a component of an electronic fuel injector, and PB permalloy components have been commercialized. However, Ni, an element of PB permalloy, is expensive material, making it difficult to produce the fuel injector component at a low cost. As a solution to this problem, we studied the magnetic and mechanical properties of Fe-Cr-Si alloys by MIM process. These results revealed that the magnetic and mechanical properties were improved by reducing Cr content. However, reducing Cr content is expected to reduce corrosion resistance of the alloys. In this study, Fe-Cr-Si-Mo alloy specimens containing Mo to improve corrosion resistance are manufactured by MIM process, and we investigated the magnetic and mechanical properties. These results revealed that Fe-10Cr-3Si-2Mo alloy is a material with an excellent balance between magnetic and mechanical properties.

2020 ◽  
Vol 841 ◽  
pp. 300-305
Author(s):  
Masahiro Kimura ◽  
Toru Shimizu ◽  
Hisaki Watari

In recent years, metal injection molding (MIM) has been adopted as a process of manufacturing a solenoid valve which is a component of an electronic fuel injector, and PB permalloy component has been commercialized. However, Ni that is an element of PB permalloy is expensive material, and it makes difficult to produce the injector component in low cost. To reduce the production cost, we can use Fe-Cr alloys, although there are few studies on Fe-Cr alloys by MIM process. In this study, Fe-Cr-Si alloy specimens were manufactured by MIM process and the magnetic and mechanical properties were investigated. From these results, we found that high performance Fe-Cr-Si alloy can be obtained by setting Si content to 3% and reducing Cr content.


PRICM ◽  
2013 ◽  
pp. 1115-1122
Author(s):  
Ken Cho ◽  
Mitsuo Niinomi ◽  
Masaaki Nakai ◽  
Junko Hieda ◽  
Pedro Fernandes Santos ◽  
...  

2014 ◽  
Vol 802 ◽  
pp. 483-488
Author(s):  
C. Menapace ◽  
G. Cipolloni ◽  
A. Molinari

High temperature sintering, i.e. at temperatures above 1150°C is a well-known concept in industry. For example in the metal injection molding (MIM) process sintering temperatures employed are higher than 1250°C for ferrous alloys [1]. The advantages of this technology respect to conventional sintering are many: an increase in the homogeneity and in density, a better pores morphology, the elimination of some reducible oxides. All these lead to better mechanical properties and corrosion resistance which means better performance [2, 3, 4, 5].


2013 ◽  
Vol 699 ◽  
pp. 875-882 ◽  
Author(s):  
Muhammad Rafi Raza ◽  
Faiz Ahmad ◽  
M.A. Omar ◽  
R.M. German ◽  
Ali S. Muhsan

316L stainless steel is widely used in various industries due to low cost, ease of availability and exceptional combination of mechanical properties along with corrosion resistance as compared to the other available metal alloys. In powder injection molding, debinding is very critical step and improper debinding can change the final properties dramatically. In the present study, affects of debinding on mechanical properties of powder injection molded 316L stainless steel were studied. The prepared feedstocks were molded according to MPIF 50 standard using vertical injection molding machine (KSA100). The plastic binder was removed at 450°C from the molded test samples using two different furnaces i.e. commercial and laboratory furnace followed by the sintering in vacuum, hydrogen, mixture of H2 and N2 (9:1) and nitrogen at 1325°C for 2hr with post sintering cooling rate 3°C/min . Test samples debound in commercially available furnace showed 97% densification and higher mechanical properties. The corrosion resistance was reduced due to presence of residual carbon during thermal debinding. The presence of carbon and formation of carbides and nitrides were confirmed by XRD and microstructural analysis. The results showed that the test samples debound in commercial furnace showed brittle behavior due to the presence of carbides and nitrides. Test samples sintered in N2 showed 96.3% density and tensile strength 751MPa. This value of strength is twice as compared to the sample debound in laboratory furnace followed by the sintering in vacuum. The achieved mechanical properties in vacuum sintered samples were comparable to the wrought 316L stainless steel (according to ASTM standard).


2010 ◽  
Vol 39 (5) ◽  
pp. 775-780 ◽  
Author(s):  
Hu Youhua ◽  
Li Yimin ◽  
He Hao ◽  
Lou Jia ◽  
Tang Xiao

2021 ◽  
Vol 1028 ◽  
pp. 403-408
Author(s):  
Apang Djafar Shieddieque ◽  
Shinta Virdhian ◽  
Moch Iqbal Zaelana Muttahar ◽  
Muhammad Rafi Muttaqin

Metal injection molding (MIM) is a near net shape manufacturing technique for producing small, complex, precision parts in mass production. MIM process is manufacturing method that combines traditional shape-making capability of plastic injection molding and the materials flexibility of powder metallurgy. The process consists of the following four steps: mixing of metal powder and binder, injection molding to shape the component, debinding to remove the binder in the component, sintering to consolidate the debound parts. In this research, the physical and mechanical properties of metal injection molded 17-4 PH stainless steel were investigated with the variation of sintering temperatures (1300 °C - 1360 °C) and atmosphere conditions (argon and vacuum conditions). The relative density, microstructure, distortion, and hardness are measured and analyzed in this study. The results show that highest relative density of 87%, relative homogeneous shrinkage and high hardness are achieved by sintering at 1360 °C for 1.5 hours and argon atmosphere. At the same sintering temperature and time, sintering in vacuum shows lower relative density (81%) than that in argon condition due to pores growth. The pore growths were not observed in the argon atmosphere. It can be concluded that sintering stages more rapidly under vacuum condition. The hardness measurements result also showed that high hardness is obtained by high density parts. The optimum average hardness obtained in this study is 239 HV. However, the hardness properties results are still lower than 280 HV according to MPIF Standard 35 for MIM parts.


2019 ◽  
Vol 18 (3) ◽  
pp. 331-338
Author(s):  
Jemssy Ronald Rohi ◽  
Priyo Tri Iswanto ◽  
Tjipto Sujitno ◽  
Erich Umbu Kondi

AISI 316L is widely used for implantation in orthopedic surgery due to its good corrosion resistance, mechanical properties and low cost. However, AISI 316L is not well suited for biocompatibility with the body, so implant material with AISI 316L can’t be used for a long time. One way to improve the corrosion resistance and mechanical properties of AISI 316L is to perform a surface treatment such as sputtering. This study discusses the effect of deposition sputtering TiN of 60, 90, 120 and 150 minutes on roughness and surface hardness at a ratio of argon gas and nitrogen to 80% Ar:20% N2. The results of the surface roughness value of the TiN sputtering layer deposited to AISI 316L for 60, 90, 120, and 150 minutes were 0.02 μm, 0.04 μm, 0.06 μm, and 0.04 μm respectively. This shows that the coating time of TiN in AISI 316L has no significant influence on value of surface roughness. Surface hardness results at 60, 90, 120, and 150 minutes were obtained with 268 HVN, 275 HVN, 278 HVN and 282 HVN. Increased hardness value, as the TiN thin layer has a higher hardness value compared to AISI 316L. The longer the deposition time, the more layers are formed and the layer becomes thicker. With the thickness of the layer, the density at the grain boundary increases. Because the higher density leads to grain growth, in which form micropores.


Sign in / Sign up

Export Citation Format

Share Document