Contact Temperature Calibration of PPS Thrust Bearings under Dry Condition

2021 ◽  
Vol 1020 ◽  
pp. 131-135
Author(s):  
Hiroya Nihon’yanagi ◽  
Takahiro Matsueda ◽  
Katsuyuki Kida ◽  
Yuji Kashima

In the present study, Rolling Contact Fatigue (RCF) tests of Poly-phenylene-sulfide (PPS) thrust bearings under dry condition were carried out and the relationship between fatigue life of bearings and temperature was studied. Furthermore, in order to investigate maximum temperature of PPS thrust bearings in service, in order to obtain the calibration data, the temperatures of rolling contact element and Infrared (IR) temperature on the side of top race were measured and correlated. It is concluded that the contact temperature of failure PPS bearing was higher than the glass transition point but lower than a melting point of PPS.

2014 ◽  
Vol 563 ◽  
pp. 270-274 ◽  
Author(s):  
Xiao Chen Shi ◽  
Yuji Kashima ◽  
Katsuyuki Kida

There were two procedure about surface failure in rolling contact fatigue (RCF), wear and crack propagation. In our previous study, it was concluded that the main reason for PPS bearings failure in water was flaking due to surface crack propagation. The relationship between wear loss, rotation speed and thrust load of PPS bearings under RCF in water was investigated. In this study, the detailed surface profiles under heavy load were studied by using both LCM and two-dimensional measurement sensor to study the process of flaking failure.


2016 ◽  
Vol 703 ◽  
pp. 172-177 ◽  
Author(s):  
Xiao Chen Shi ◽  
Masaya Orito ◽  
Yuji Kashima ◽  
Koshiro Mizobe ◽  
Katsuyuki Kida

Considering the advantages on light weight, low friction coefficient, high corrosion resistance and electric insulation, polymer bearings are widely used under certain environments, where the toughness like metal bearings is not necessary. In our previous study, it was concluded that the main reason for PEEK thrust bearings failure in water was flaking due to surface crack propagation. In the present study, crack observations were made on groove surfaces and cross sections along both radial and rolling directions in order to find the relation between cracks and flaking failures.


2013 ◽  
Vol 683 ◽  
pp. 90-93 ◽  
Author(s):  
Koshiro Mizobe ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
Edson Costa Santos ◽  
Yuji Kashima ◽  
...  

Polyetheretherketone (PEEK) is a tough semi-crystalline thermoplastic polymer with excellent mechanical properties. While abilities of polyphenylenesulfide (PPS) are similar to PEEK, former material cost was lower than later. Polytetrafluoroethylene (PTFE) is well known because of its low friction coefficient and self lubrication ability. The objective of this study is to observe the friction coefficient of hybrid bearings, PTFE retainer sandwiched with PPS-races or PEEK-races. Rolling contact fatigue tests were performed and in situ friction forces wear measured. It is concluded that the PTFE retainer reduced friction coefficient.


2019 ◽  
Vol 814 ◽  
pp. 152-156 ◽  
Author(s):  
Xiao Chen Shi ◽  
Akihiro Adachi ◽  
Katsuyuki Kida

In recent years, environments of bearings and polymer materials have been more and more attractive due to several advantages against ordinary metal material. However, there is still room for the further study about strength of polymer bearings. One of questions is the mechanism of fatigue crack propagation, which is the main cause of the damage of polymer bearings under rolling contact with lubricant, like water. In this study, subsurface stress distribution and failure of PPS thrust bearings under rolling contact fatigue in water are discussed to understand the detail of the crack propagation.


2020 ◽  
Vol 858 ◽  
pp. 101-105
Author(s):  
Syunsuke Mizozoe ◽  
Katsuyuki Kida

In this study, crack propagation in PPS thrust bearings under rolling contact fatigue (RCF) in water was observed, and relation between subsurface crack and internal shear stress parallel to the surface was investigated. It was found the cause of flaking was subsurface crack. They were evaluated in terms of contact stress and friction between their faces. It was discovered that subsurface cracks distributed around shear stress peak, and flaking failure was dominated by subsurface shear stress.


2012 ◽  
Vol 457-458 ◽  
pp. 557-562 ◽  
Author(s):  
Koshiro Mizobe ◽  
Edson Costa Santos ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
Katsuyuki Kida ◽  
...  

In order to establish an optimal combination of materials used for polymer thrust bearings, two types of components (polyetheretherketone (PEEK) races - polytetrafluoroethylene (PTFE) retainer and PEEK races – PEEK retainer) were tested by rolling contact fatigue. Their wear properties were investigated and it was concluded that using a PTFE retainer, the wear loss was improved due to PTFE wear debris attaching to the wear track and acting as a lubricant.


2013 ◽  
Vol 418 ◽  
pp. 205-208 ◽  
Author(s):  
Xiao Chen Shi ◽  
Koshiro Mizobe ◽  
Yuji Kashima ◽  
Katsuyuki Kida

In the previous study on PPS race-PTFE retainer Hybrid polymer bearings, the relationship between thrust load, rotation speeds and wear loss under dry condition was investigated. It was found that the wear loss obviously changed under the thrust load ranging from 400N to 500N at the rotation speeds of 450rpm and 600rpm. The object of this study is to observe the friction coefficient at the rotation speeds ranging from 450rpm and 600N under thrust load of 400N. Rolling contact fatigue tests were performed and it was concluded that friction coefficient decreases with the rotation speeds.


2021 ◽  
Vol 888 ◽  
pp. 77-81
Author(s):  
Shintaro Kanagawa ◽  
Takahiro Matsueda ◽  
Katsuyuki Kida ◽  
Yuji Kashima

In this study, in order to evaluate the progress of internal cracks in PPS thrust bearings under rolling contact fatigue in water, cracks were observed by a full-cross-section observation method using a lathe machining. “Main subsurface crack” initiated at the surface toward the inside, then grew in a direction parallel to the surface. They connected with many “Semi-circular cracks” initiating at the surface from the opposite side to the inside, to from a semi-ellipsoidal flaking damage. It was found that the “Semi-circular cracks” and the “Main subsurface crack” dominated the flaking destruction.


Sign in / Sign up

Export Citation Format

Share Document