On Durability of Structurally Inhomogeneous Materials

2021 ◽  
Vol 1031 ◽  
pp. 24-30
Author(s):  
Vladimir I. Mironov ◽  
Olga A. Lukashuk ◽  
Dmitry A. Ogorelkov

Numerical methods used to calculate strength are based on energy approaches and minimization of functionals of one type or another. Yet the model of a material is limited to stable processes of deformation. As a result, a considerable number of deformation properties related to realization of the softening stage in materials of structural elements remains unaccounted for. To describe fracture as a new phenomenon in the behavior of structures, one needs to apply newer experimental and calculational approaches. The article cites results of modelling and experimental notions on the stage of softening in materials and its role in determining their durability. It is proposed to define the durability of a structurally inhomogeneous material as its capacity of equilibrium deformation beyond its ultimate strength under specified loading conditions. That reflects nonlocality of criteria for the failure of the material, their dependence both on its own properties and the geometry of a structural element. Complete stress-strain diagrams for structural materials of various classes and examples on how the softening stage is realized in structural materials are given.

2019 ◽  
Vol 253 ◽  
pp. 01003
Author(s):  
Vladimir Mironov ◽  
Olga Lukashuk

The paper considers – in terms of modeling and experimental testing – the softening stage manifested in structurally inhomogeneous materials under quasi-static and cyclic load. The method which is used to build the theoretical basis is typical for mechanics. It starts with defining a new material property – strain-softening phase. The stage is realized in the form of a descending branch of the curve on computer diagrams recorded during simple tension or torsion tests on non-reusable specimens in a reasonably rigid testing machine. The type of such a diagram is determined by the structural inhomogeneity of a material, which is defined by distribution law for strength and plasticity properties of structural elements. Complete stress-strain curves or diagrams (CSSD) with a branch descending to zero have been plotted for materials of various classes. Degradation of parameters of a descending branch on a computer diagram recorded for trained specimens provides a new angle on the subject of relation between static and cyclic material properties. The experiments and modeling which were carried out provide basic understanding of softening in terms of deformation.


2020 ◽  
Vol 92 (6) ◽  
pp. 51-58
Author(s):  
S.A. SOLOVYEV ◽  

The article describes a method for reliability (probability of non-failure) analysis of structural elements based on p-boxes. An algorithm for constructing two p-blocks is shown. First p-box is used in the absence of information about the probability distribution shape of a random variable. Second p-box is used for a certain probability distribution function but with inaccurate (interval) function parameters. The algorithm for reliability analysis is presented on a numerical example of the reliability analysis for a flexural wooden beam by wood strength criterion. The result of the reliability analysis is an interval of the non-failure probability boundaries. Recommendations are given for narrowing the reliability boundaries which can reduce epistemic uncertainty. On the basis of the proposed approach, particular methods for reliability analysis for any structural elements can be developed. Design equations are given for a comprehensive assessment of the structural element reliability as a system taking into account all the criteria of limit states.


2013 ◽  
Vol 11 (3) ◽  
pp. 285-292
Author(s):  
Dragoslav Stojic ◽  
Stefan Conic

In contemporary design, vehicle impact into the structures is paid great attention since they can be dominant, depending on the type of structure. The key issue in the vehicle impact analysis is the proper determination of intensity and way of action of dynamic forces on the structural element and its behavior after the imparted load. The Eurocodes, in the annexes provide recommendations for determination of force intensity depending on mass and velocity of the colliding vehicle. Equivalent static loads causing approximate effects on the structural elements are used as quite approximate and efficient methods. The paper comprises the analysis of deformation of columns having the same characteristics, exposed to impact loads via the equivalent static loads, depending on the stress state in columns, and a comparative analysis has been done.


Author(s):  
Patricio A. A. Laura

Abstract A survey of studies dealing with vibrating structural elements using simple polynomial approximations in connection with Rayleigh-Ritz or Galerkin-type methods is presented. The classical use of polynomials when solving dynamic problems of deformable bodies consists of constructing a set of coordinate functions in such a way that they satisfy at least the essential boundary conditions and that they represent “reasonably well” the deformation field of the structural element under study. An alternative and more rational procedure has been developed and used in recent years whereby orthogonal polynomials are used. A “base function” is constructed and then one generates a set of orthogonal polynomials using the Gram-Schmidt or equivalent procedure. The present paper presents comparisons of numerical results in the case of different types of vibrating structural elements Special emphasis is placed on Rayleigh’s optimization procedure which consists of taking one of the exponents of the polynomial coordinate functions as an optimization parameter “γ”. Since the calculated eigenvalues constitute upper bounds, by minimizing them with respect to “γ” one is able to optimize the eigenvalues.


2019 ◽  
Vol 95 (4) ◽  
pp. 639-656 ◽  
Author(s):  
Erin L Meyer-Gutbrod ◽  
Li Kui ◽  
Mary M Nishimoto ◽  
Milton S Love ◽  
Donna M Schroeder ◽  
...  

There are thousands of offshore oil and gas platforms worldwide that will eventually become obsolete, and one popular decommissioning alternative is the "rigs to reefs" conversion that designates all or a portion of the underwater infrastructure as an artificial reef, thereby reducing the burden of infrastructure removal. The unique architecture of each platform may influence the size and structure of the associated fish assemblage if different structural elements form distinct habitats for fishes. Using scuba survey data from 11 southern California platforms from 1995 to 2000, we examined fish assemblages associated with structural elements of the structure, including the major horizontal crossbeams outside of the jacket, vertical jacket legs, and horizontal crossbeams that span the jacket interior. Patterns of habitat association were examined among three depth zones: shallow (<16.8 m), midwater (16.8–26 m), and deep (>26 m); and between two life stages: young- of-the-year and non-young-of-the-year. Fish densities tended to be greatest along horizontal beams spanning the jacket interior, relative to either horizontal or vertical beams along the jacket exterior, indicating that the position of the habitat within the overall structure is an important characteristic affecting fish habitat use. Fish densities were also higher in transects centered directly over a vertical or horizontal beam relative to transects that did not contain a structural element. These results contribute to the understanding of fish habitat use on existing artificial reefs, and can inform platform decommissioning decisions as well as the design of new offshore structures intended to increase fish production.


1971 ◽  
Vol 38 (295) ◽  
pp. 286-294 ◽  
Author(s):  
J. Pastor-Rodriguez ◽  
H. F. W. Taylor

SummaryThe crystal structure of coalingite (Mg10Fe2(OH)24(CO3)·2H2O) has been determined using single-crystal X-ray methods. The mineral is trigonal, with space group Rm, aH = 3·12, cH = 37·4 Å, Z = ½, and (0001) cleavage. The structure is of a layer type, and is based on a structural element about 12·5 Å thick in the c-direction and consisting of two brucite-like layers and one disordered layer containing carbonate ions and water molecules and resembling those in sjögrenite and pyroaurite. The unit cell comprises three of these structural elements stacked together in the c-direction. The Mg2+ and Fe3+ ions are randomly distributed among all the octahedral sites of the brucite-like layers. The structure closely resembles those of sjögrenite and pyroaurite, but has two brucite-like layers between each CO32−−H2O layer where these have one. There is a tendency to random interstratification, and the crystals appear to contain intergrown regions of brucite and of sjögrenite or pyroaurite. Coalingite-K probably has a similar structure, but with three brucite-like layers between each -H2O layer; its idealized formula is probably Mg16Fe2(OH)36(CO3).2H2O.


Author(s):  
C. Mei

There has been an increasing interest in vibration control in recent years. This is due to demands for mechanical structures to be lighter and faster. Lighter and faster structures are more prone to vibrations. Hence, there is an imperative need for practical solutions to vibration problems in complex practical mechanical systems. Regardless of the complexity of a structure, from wave vibration standpoint, it consists of only two basic types of structural components, namely, structural elements and structural joints. In this paper, a control strategy is developed for controlling vibrations flowing from one structural element to another through the structural joint. An L-shaped beam is studied as an example structure. Numerical results are given.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Luis S. Vaca Oyola ◽  
Mónica R. Jaime Fonseca ◽  
Ramsés Rodríguez Rocha

This study presents the damaged flexibility matrix method (DFM) to identify and determine the magnitude of damage in structural elements of plane frame buildings. Damage is expressed as the increment in flexibility along the damaged structural element. This method uses a new approach to assemble the flexibility matrix of the structure through an iterative process, and it adjusts the eigenvalues of the damaged flexibility matrices of each system element. The DFM was calibrated using numerical models of plane frames of buildings studied by other authors. The advantage of the DFM, with respect to other flexibility-based methods, is that DFM minimizes the adverse effect of modal truncation. The DFM demonstrated excellent accuracy with complete modal information, even when it was applied to a more realistic scenario, considering frequencies and modal shapes measured from the recorded accelerations of buildings stories. The DFM also presents a new approach to simulate the effects of noise by perturbing matrices of flexibilities. This approach can be useful for research on realistic damage detection. The combined effects of incomplete modal information and noise were studied in a ten-story four-bay building model taken from the literature. The ability of the DFM to assess structural damage was corroborated. Application of the proposed method to a ten-story four-bay building model demonstrates its efficiency to identify the flexibility increment in damaged structural elements.


2011 ◽  
Vol 25 (31) ◽  
pp. 4149-4153
Author(s):  
W. G. Fergusona ◽  
C. K. Seal ◽  
M. A. Hodgson ◽  
G. C. Clifton

The second Christchurch earthquake on February 22, 2011, Magnitude 6.35, generated more intense shaking in the Central Business District than the September 4, 2010 Darfield earthquake, Magnitude 7.1. The second earthquake was closer to the CBD and at shallow depth, resulting in peak ground accelerations 3 times higher. There was significant failure of unreinforced masonry buildings and collapse of a few reinforced concrete buildings, leading to loss of life. Steel structures on the whole performed well during the earthquake and the plastic, inelastic deformation was less than expected given the strength of the recorded ground accelerations. For steel buildings designed to withstand earthquake loading, a design philosophy is to have some structural elements deform plastically, absorbing energy in the process. Typically elements of beams are designed to plastically deform while the columns remain elastic. In the earthquake some of these elements deformed plastically and the buildings were structurally undamaged. The question which then arises is; the building may be safe, but will it withstand a further severe earthquake? In other words how much further plastic work damage can be absorbed without failure of the structural element? Previous research at Auckland on modern structural steel, where the steel was prestrained various levels, to represent earthquake loading, the toughness was determined, as a function of prestrain for the naturally strain-aged steel. Further research, on the same steel, investigated life to failure for cyclic plastic straining in tension and compression loading at various plastic strain amplitudes. This work has shown that provided the plastic strain in the structural element is in the range 2 – 5% the steel will still meet the relevant NZ Standards. To determine the remaining life the plastic strain must be determ ined then the decision made; to use the building as is, replace the structural element or demolish.


Sign in / Sign up

Export Citation Format

Share Document