Investigation of the Heat-Affected Zone Properties During Cladding of Power Equipment with Austenitic Materials Using Control Mechanical Impacts on the Strip Electrode

2021 ◽  
Vol 1038 ◽  
pp. 100-107
Author(s):  
Vitaliy Ivanov ◽  
Elena V. Lavrova ◽  
Fedor Morgay ◽  
Oleg Semkiv

During cladding an austenitic layer on low-carbon and medium-alloyed steels, the properties of the heat-affected zone, along with the resistance of the surface layer to resist corrosion, largely determine the performance and durability of the surfaced product. The work is devoted to the study of the dependence of the properties of the heat-affected zone during cladding of power equipment with austenitic materials on the parameters of the control mechanical impacts on the strip electrode and determination of their optimal range, which ensures high values of the mechanical properties of the deposited layer.

2008 ◽  
Vol 589 ◽  
pp. 31-35
Author(s):  
Gábor Lengyel ◽  
Béla Palotás

The mechanical properties of temper-grade steels can be modified in a wide range by heat treatment. The principle of heat treatment lies in the good hardenability, so when such steels are welded it is very likely that the heat affected zone is hardened. Considering the fact that in the case of design simplifications it may be needed to weld temper-grade steels, as well therefore it is of crucial importance to eliminate cold cracking. There are many methods available to determine preheat temperature. The applicability of methods for determination of preheat temperature was checked by experimental welding for both two and three dimensional heat conduction. According to our experience the different methods cannot be applied in general namely they are valid only under certain conditions.


Author(s):  
V.V. Galkin ◽  
S.A. Mantserov ◽  
D.O. Dudnikov ◽  
N.A. Ogurtsov

The application of software for determining of the mechanical properties of metallic materials under conditions of multi-junction deformation is considered. The composition of the software and the tasks to be performed: the determination of the stress-strain state using software systems, the quantitative calculation of the structure parameters and the assessment of the mechanical properties of the material using the developed computer programs are clarified. Technological solutions for determining of the strain hardening of low-carbon steels during cold upsetting and the recrystallization process assessment of austenitic steel during free forging are presented.


2020 ◽  
pp. 160-163
Author(s):  
V.F. Bezyazychny

Methodology for calculating of the cold-work hardening degree of the part surface machined by blade tool taking into account the physico-mechanical properties of the workpiece material, the cutting mode, the geometry of the tool cutting part is proposed.


2015 ◽  
Vol 1125 ◽  
pp. 195-199
Author(s):  
Toto Triantoro Budi Wardoyo ◽  
S. Izman ◽  
Safian Sharif ◽  
Hosta Ardhyananta ◽  
Denni Kurniawan

In this paper, Shielded Metal Arc Welding (SMAW) was performed on low carbon steel with three types of butt joint (i.e., square, single V, and double V) and uncapping of the weldment. The welding performance is measured based on the mechanical properties (i.e., strength and hardness). Grain size and microstructure of the weldments were also evaluated. The results show that all tested samples show similar tensile strength, which means there was no significant effect of the type of butt joint type or uncapping. The hardness of the weld metal was found to be slightly higher than that of heat affected zone and base metal, in which both showed similar hardness values. The grain size of the weld metal was also finer than that of heat affected zone and base metal. This trend in hardness and grain size on three regions of the welded sample was the same regardless of the butt joint type and whether the weldment was uncapped or not.


Sign in / Sign up

Export Citation Format

Share Document