Colloid-Chemical Regularities of Reagent Wastewater Treatment of Dairies

2021 ◽  
Vol 1038 ◽  
pp. 235-241
Author(s):  
Volodymyr Andronov ◽  
Yuliya Danchenko ◽  
Yevhen Makarov ◽  
Tatyana Obizhenko

A comparative characterization of chemical reagents Al2(SO4)3, FeSO4 and FeCl3 in the process of wastewater treatment of dairies. The colloid-chemical regularities of the course of hydrolysis of chemical reagents depending on the nature, concentration and acidity of wastewater are established. It was found that the greatest degree of purification from ether-soluble substances 87-88% is provided by the addition of FeCl3 at a concentration of 150-200 mg / l at a pH of 9.5-10.

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
María-Efigenia Álvarez-Cao ◽  
María-Esperanza Cerdán ◽  
María-Isabel González-Siso ◽  
Manuel Becerra

Abstract Background α-Galactosidases are enzymes that act on galactosides present in many vegetables, mainly legumes and cereals, have growing importance with respect to our diet. For this reason, the use of their catalytic activity is of great interest in numerous biotechnological applications, especially those in the food industry directed to the degradation of oligosaccharides derived from raffinose. The aim of this work has been to optimize the recombinant production and further characterization of α-galactosidase of Saccharomyces cerevisiae. Results The MEL1 gene coding for the α-galactosidase of S. cerevisiae (ScAGal) was cloned and expressed in the S. cerevisiae strain BJ3505. Different constructions were designed to obtain the degree of purification necessary for enzymatic characterization and to improve the productive process of the enzyme. ScAGal has greater specificity for the synthetic substrate p-nitrophenyl-α-d-galactopyranoside than for natural substrates, followed by the natural glycosides, melibiose, raffinose and stachyose; it only acts on locust bean gum after prior treatment with β-mannosidase. Furthermore, this enzyme strongly resists proteases, and shows remarkable activation in their presence. Hydrolysis of galactose bonds linked to terminal non-reducing mannose residues of synthetic galactomannan-oligosaccharides confirms that ScAGal belongs to the first group of α-galactosidases, according to substrate specificity. Optimization of culture conditions by the statistical model of Response Surface helped to improve the productivity by up to tenfold when the concentration of the carbon source and the aeration of the culture medium was increased, and up to 20 times to extend the cultivation time to 216 h. Conclusions ScAGal characteristics and improvement in productivity that have been achieved contribute in making ScAGal a good candidate for application in the elimination of raffinose family oligosaccharides found in many products of the food industry.


2000 ◽  
Vol 36 (3) ◽  
pp. 255-257
Author(s):  
V. A. Polyakov ◽  
L. V. Rimareva ◽  
M. B. Overchenko ◽  
V. V. Trifonova

2016 ◽  
Vol 2 (2) ◽  
pp. 3
Author(s):  
Muhammad Irfan-maqsood ◽  
Hojjat Naderi-Meshkin ◽  
Asieh Heirani-Tabasi ◽  
Monireh Bahrami ◽  
Mahdi Mirahmadi ◽  
...  

1994 ◽  
Vol 29 (7) ◽  
pp. 229-237 ◽  
Author(s):  
J. Kruit ◽  
F. Boley ◽  
L. J. A. M. Jacobs ◽  
T. W. M. Wouda

Influent characterization and biosorption experiments were carried out with settled influent of seven wastewater treatment plants to study the influence of O2 in the selector in relation to the success of developing good settling properties of the sludge. In previous years working selectors were installed and/or pilot plant research was carried out at these wastewater treatment plants. Characterization of the influent was done with help of standard COD and BOD measurements with help of a coarse filter. The research has elucidated that the presence of O2 in the selector, at initial sludge loadings of 3.5-6.5 kg BOD/kg MLSS.d, is important for producing good settling properties of the sludge when the sum of readily biodegradable COD and rapidly hydrolysable COD is greater than 40%. When the sum of sludge COD and slow hydrolysable COD is greater than 50% an unaerated selector can be used.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 504
Author(s):  
Yane Ansanay ◽  
Praveen Kolar ◽  
Ratna Sharma-Shivappa ◽  
Jay Cheng ◽  
Consuelo Arellano

In the present research, activated carbon-supported sulfonic acid catalysts were synthesized and tested as pretreatment agents for the conversion of switchgrass into glucose. The catalysts were synthesized by reacting sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid with activated carbon. The characterization of catalysts suggested an increase in surface acidities, while surface area and pore volumes decreased because of sulfonation. Batch experiments were performed in 125 mL serum bottles to investigate the effects of temperature (30, 60, and 90 °C), reaction time (90 and 120 min) on the yields of glucose. Enzymatic hydrolysis of pretreated switchgrass using Ctec2 yielded up to 57.13% glucose. Durability tests indicated that sulfonic solid-impregnated carbon catalysts were able to maintain activity even after three cycles. From the results obtained, the solid acid catalysts appear to serve as effective pretreatment agents and can potentially reduce the use of conventional liquid acids and bases in biomass-into-biofuel production.


2021 ◽  
Vol 345 ◽  
pp. 128764
Author(s):  
Yeming Chen ◽  
Hongsheng Zhang ◽  
Caimeng Zhang ◽  
Xiangzhen Kong ◽  
Yufei Hua

Sign in / Sign up

Export Citation Format

Share Document