Deactivation of Red Mud by Primary Aluminum Production Wastes

2021 ◽  
Vol 1040 ◽  
pp. 109-116
Author(s):  
V.Yu. Piirainen ◽  
A.A. Barinkova ◽  
V.N. Starovoytov ◽  
V.M. Barinkov

Current global environmental challenges and, above all, global warming associated with a change in the carbon balance in the atmosphere has led to the need for urgent and rapid search for ways to reduce greenhouse gas emissions into the atmosphere, which primarily include carbon dioxide as a by-product of human activity and technological progress. One of these ways is the creation of industries with a complete cycle of turnover of carbon dioxide. Aluminum is the most sought-after nonferrous metal in the world, but its production is not environmentally safe, so it constantly requires the development of knowledge-intensive technologies to improve the technological process of cleaning and disposal of production waste, primarily harmful emissions into the atmosphere. Another environmental problem related to aluminum production is the formation and accumulation in mud lagoon of huge amounts of so-called highly alkaline "red mud," which is a waste product of natural bauxite raw material processing into alumina - the feedstock for aluminum production. Commonly known resources and technological methods of neutralizing red mud and working with it as ore materials for further extraction of useful components are still not used because of their low productivity and cost-effectiveness. This article describes the negative impact of waste in the form of "red" mud and carbon dioxide of primary aluminum production on the environment. The results showed that thanks to carbonization of red mud using carbon dioxide, it is possible to achieve rapid curing and its compact formation for safer transportation and storage until further use. Strength tests of concrete samples filled with deactivated red mud were also carried out, which showed the prospects of using concrete with magnesia binder.

Author(s):  
Yu. V. Grebnev ◽  
V. F. Zharkova ◽  
N. V. Markina ◽  
D. Yu. Grebnev

The possibility of using insulating slag-forming mixtures based on highly dispersed carbon-containing material (VUM), which is a waste product of primary aluminum production, to reduce heat loss was considered.


2021 ◽  
Vol 170 ◽  
pp. 105584
Author(s):  
Victor Brial ◽  
Hang Tran ◽  
Luca Sorelli ◽  
David Conciatori ◽  
Claudiane M. Ouellet-Plamondon

2016 ◽  
Vol 12 (2) ◽  
pp. 157-172
Author(s):  
Gábor Laborczy ◽  
András Winkler

Abstract It is well known that worldwide deforestation has a negative impact on the global environment. Forests play an important role in producing oxygen as well as retaining gases that create the greenhouse effect. Forests primarily absorb carbon dioxide, the major air pollutant released by the industrial activities. Energy production is the major source of environmental contamination. In addition to reducing CO2 emissions, another issue this industrial sector must tackle is to decrease the use of fossil fuels by substituting them with renewable, environmentally friendly energy sources. One of the answers to these challenges is the utilization of biomass as energy sources. However, biomass-based fuels include short bolts, split round-wood, pulpwood, bark and by-products of sawmilling, which are the raw materials for the wood-based panel industry as well.Wood utilization of the forest products industry has a major impact on the delayed release of carbon dioxide stored in the wood. All over the world, just as in Hungary, the wood-based panel industry mainly uses low quality wood resources and turns them into value added products. The elongation of the life cycle of low quality wood materials decreases CO2 emissions, thus significantly contributing to environmental protection. Furthermore, it is assumed that raw material demand of the wood-based panel industry could be satisfied by focusing on sustainable forest management and well-planned reforestation. Additionally, special energy-plantations may provide extra wood resources, while waste and other non-usable parts of trees contribute to the effective and economic operation of biomass utilizing power-plants. This paper summarizes the current situation of the Hungarian wood-based panel industry and discusses the effects of the panel manufacturing processes on the environment. Also, it outlines the possible future of this important segment of the forest products industry.


2008 ◽  
Vol 49 (2) ◽  
pp. 84-89 ◽  
Author(s):  
A. V. Proshkin ◽  
A. M. Pogodaev ◽  
P. V. Polyakov ◽  
V. V. Pingin ◽  
I. A. Yarosh

2009 ◽  
Vol 52 (8) ◽  
pp. 2161-2166 ◽  
Author(s):  
Feng Gao ◽  
ZuoRen Nie ◽  
ZhiHong Wang ◽  
HongMei Li ◽  
XianZheng Gong ◽  
...  

2014 ◽  
Vol 30 (12) ◽  
pp. 1403-1407 ◽  
Author(s):  
Niki-Iliana Poulimenou ◽  
Ioanna Giannopoulou ◽  
Dimitrios Panias

2007 ◽  
Vol 38 (13) ◽  
pp. 2358-2361 ◽  
Author(s):  
Qing-Yu Li ◽  
Jie Li ◽  
Jian-Hong Yang ◽  
Yan-Qing Lai ◽  
Hong-Qiang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document