Numerical Simulation of Steel Concrete Composite Floor System

2021 ◽  
Vol 1047 ◽  
pp. 195-201
Author(s):  
M. Mehedi Hasan Talukder ◽  
Mahfuza Maisha Mouri ◽  
Abhishek Singha ◽  
Md. Soebur Rahman

This paper explores the ultimate strength of the composite floor system of structural steel concrete. ABAQUS, used to research non-linear competencies and ultimate load-carrying capability of such floor systems, developed the Finite Element Model (FEM) in 3-D. A comparison of computed values with experimental results has validated the proposed finite element model. The measured and experimental findings show a good match with an average variation of 10%. In parametric study effects of different sizes of shear studs on the ultimate strength of the floor system have been explored on full size specimens. Results show that an increase in height of the shear stud with the same diameter increases the ultimate strength of the floor system. An Increase in the diameter of the shear stud also increases the ultimate capacity of the floor system.

2002 ◽  
Vol 29 (4) ◽  
pp. 622-626
Author(s):  
Peter Lee ◽  
Ying H Chui ◽  
Ian Smith ◽  
Noel Mailvaganam ◽  
Gerry Pernica

This paper presents finite element simulations of curling of unreinforced concrete topping laid over wood floor systems. The finite analysis consists of two parts. The first part calculates the relative moisture distribution with respect to the age of the concrete, while the second determines the topping curling deformation based on modulus of elasticity, density, and shrinkage of the concrete. With the finite element model the curling profile at any point in time can be predicted. Predictions agree reasonably well with measurements from a full-sized wood floor with a thin concrete topping. A model-based parametric study was performed. For the floor size investigated the results of the parametric study indicate that curling is greatly influenced by topping thickness and relative humidity of the surrounding air. Although the modelling as discussed is a preliminary approach, it provides a basis for further enhancements that will address factors such as creep and relaxation of concrete and deformation of the underlying floor system. Key words: finite element analysis, concrete topping, wood floor, curling, shrinkage.


The ultimate strength of blade stiffened composite plates with various sizes of the stiffener is studied numerically using ANSYS software. The GFRP stiffened composite plates were modeled in ANSYS as SHELL elements with orthotropic properties. The finite element model of the GFRP stiffened composite plates was analysed to obtain deflection, axial deformation and stress contours and the ultimate load values. The obtained results of the finite element model were validated with that of available experimental data. The validated finite element model was used to study the effect of stiffener size. The stiffener size was varied from 10mm to 100mm. It was observed that smaller size of stiffeners were ineffective in stiffening the plate. The optimum size of stiffener was found to be 50mm to 75 mm. .


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


2001 ◽  
Author(s):  
Y. W. Kwon ◽  
J. A. Lobuono

Abstract The objective of this study is to develop a finite element model of the human thorax with a protective body armor system so that the model can adequately determine the thorax’s biodynamical response from a projectile impact. The finite element model of the human thorax consists of the thoracic skeleton, heart, lungs, major arteries, major veins, trachea, and bronchi. The finite element model of the human thorax is validated by comparing the model’s results to experimental data obtained from cadavers wearing a protective body armor system undergoing a projectile impact.


Author(s):  
V. Ramamurti ◽  
D. A. Subramani ◽  
K. Sridhara

Abstract Stress analysis and determination of eigen pairs of a typical turbocharger compressor impeller have been carried out using the concept of cyclic symmetry. A simplified model treating the blade and the hub as isolated elements has also been attempted. The limitations of the simplified model have been brought out. The results of the finite element model using the cyclic symmetric approach have been discussed.


2013 ◽  
Vol 671-674 ◽  
pp. 1012-1015
Author(s):  
Zhao Ning Zhang ◽  
Ke Xing Li

Due to the environment, climate, loads and other factors, the pre-stress applied to the beam is not a constant. It is important for engineers to track the state of the pre-stress in order to ensure security of the bridge in service. To solve the problem mentioned above, the paper puts forward a new way to analyze the effective pre-stress using the displacement inversion method based on the inversion theory according to the measured vertical deflection of the bridge in service at different time. The method is a feasible way to predict the effective pre-stress of the bridge in service. Lastly, taking the pre-stressed concrete continuous rigid frame bridge for example, the effective pre-stress is analyzed by establishing the finite element model.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3258 ◽  
Author(s):  
Valery Gupalov ◽  
Alexander Kukaev ◽  
Sergey Shevchenko ◽  
Egor Shalymov ◽  
Vladimir Venediktov

The paper considers the construction of a piezoelectric accelerometer capable of measuring constant linear acceleration. A number of designs are proposed that make it possible to achieve high sensitivity with small dimensions and a wide frequency band (from 10−5 Hz). The finite element model of the proposed design was investigated, and its output characteristic and scale factor (36 mV/g) were obtained.


2019 ◽  
Vol 71 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Shixian Xu ◽  
Zhengtao Su ◽  
Jian Wu

Purpose This paper aims to research the influence of pressure, friction factors, roughness and actuating speed to the mixed lubrication models of outstroke and instroke. Design/methodology/approach Mixed lubrication model is solved by finite volume method, which consists of coupled fluid mechanics, deformation mechanics and contact mechanics analyses. The influence of friction factor on the finite element model is also considered. Then, contact pressure, film thickness, friction and leakage have been studied. Findings It was found that the amount of leakage is sensitive to the film thickness. The larger the film thickness is, the greater the influence received from the friction factor, however, the effect of oil film on the friction is negligible. The friction is determined mainly by the contact pressure. The trend of friction and leakage influenced by actuating velocity and roughness is also obtained. Originality/value The influence of friction factor on the finite element model is considered. This can make the calculation more accurate.


2014 ◽  
Vol 6 (1) ◽  
pp. 19-25
Author(s):  
Gergely Máté Kiss ◽  
István Vajda

Abstract Co-simulation is a method which makes it possible to study the electric machine and its drive at once, as one system. By taking into account the actual inverter voltage waveforms in a finite element model instead of using only the fundamental, we are able to study the electrical machine's behavior in more realistic scenario. The recent increase in the use of variable speed drives justifies the research on such simulation techniques. In this paper we present the co-simulation of an inverter fed permanent magnet synchronous machine. The modelling method employs an analytical variable speed drive model and a finite element electrical machine model. By linking the analytical variable speed drive model together with a finite element model the complex simulation model enables the investigation of the electrical machine during actual operation. The methods are coupled via the results. This means that output of the finite element model serves as an input to the analytical model, and the output of the analytical model provides the input of the finite element model for a different simulation, thus enabling the finite element simulation of an inverter fed machine. The resulting speed and torque characteristics from the analytical model and the finite element model show a good agreement. The experiences with the co-simulation technique encourage further research and effort to improve the method.


Sign in / Sign up

Export Citation Format

Share Document