WEDM Machining Performance of Al Based Metal Matrix Composites Reinforced with Rice Husk Ash

2022 ◽  
Vol 1048 ◽  
pp. 261-269
Author(s):  
Ziyauddin Seikh ◽  
Sandip Kunar ◽  
Rafiqul Haque ◽  
Shamim Haidar ◽  
Mukandar Sekh

With the enhancement in science and technology, necessity of complex shapes in manufacturing industries becomes essential for more versatile applications. These lead to demand for light weight and durable materials for applications in aerospace, defence, automotive, as well as sports and thermal management. Due to its high-tech structural, functional applications like defence, automobile, aerospace, thermal sensitive materials. Al-Matrix composites are considered as one of those classes of advanced engineering materials. In the present study, Al-RHA (Rice Husk Ash) composites are prepared by powder metallurgy route using 10% and 15% RHA by weight as reinforcement. Presence of abrasive particles leads to difficulty of conventional machining on Al-RHA composites hence non-conventional machining WEDM (Wire-Electric Discharge Machining) has been investigated. Suitable machining parameters for composites using wire EDM have been tried to get maximum material removal rate and speed. Optimizations of experimental parameters have been studied using Taguchi and Anova to standardize the process parameters for machining. Prime process parameters like servo-voltage, pulse-on time and pulse-off-time have been taken into consideration to study cutting quality of Al-RHA Metal matrix Composite using cutting speed as response parameters while effect of RHA weight fraction addition is also considered for evaluation to understand its influence on affecting the response.

2018 ◽  
Vol 7 (2.8) ◽  
pp. 10
Author(s):  
A VS Ram Prasad ◽  
Koona Ramji ◽  
B Raghu Kumar

Machining of Titanium alloys is difficult due to their chemical and physical properties namely excellent strength, chemical reactivity and low thermal conductivity. Traditional machining of such materials leads to formation of continuous chips and tool bits are subjected to chatter which leads to formation of poor surface on machined surface. In this study, Wire-EDM one of the most popular unconventional machining process which was used to machine such difficult-to-cut materials. Effect of Wire-EDM process parameters namely peak current, pulse-on- time, pulse-off-time, servo voltage on MRRand SR was investigated by Taguchi method. 0.25 mm brass wire was used in this process as electrode material. A surface roughness tester (Surftest 301) was used to measure surface roughness value of the machined work surface. A multi-response optimization technique was then utilized to optimize Wire-EDM process parameters for achieving maximum MRR and minimum SR simultaneously.


Author(s):  
N. G. Patil ◽  
P. K. Brahmankar ◽  
L. G. Navale

Non-traditional process like wire electro-discharge machining (WEDM) is found to show a promise for machining metal matrix composites (MMCs). However, the machining information for the difficult-to-machine particle-reinforced material is inadequate. This paper is focused on experimental investigation to examine the effect of electrical as well as nonelectrical machining parameters on performance in wire electro-discharge machining of metal matrix composites (Al/Al2O3p). Taguchi orthogonal array was used to study the effect of combination of reinforcement, current, pulse on-time, off-time, servo reference voltage, maximum feed speed, wire speed, flushing pressure and wire tension on kerf width and cutting speed. Reinforcement percentage, current, on-time was found to have significant effect on cutting rate and kerf width. The optimum machining parameter combinations were obtained for cutting speed and kerf width separately.


2014 ◽  
Vol 592-594 ◽  
pp. 831-835 ◽  
Author(s):  
Vikram Singh ◽  
Sharad Kumar Pradhan

The objective of the present work is to investigate the effects of various WEDM process parameters like pulse on time, pulse off time, corner servo, flushing pressure, wire feed rate, wire tension, spark gap voltage and servo feed on the material removal rate (MRR) & Surface Roughness (SR) and to obtain the optimal settings of machining parameters at which the material removal rate (MRR) is maximum and the Surface Roughness (SR) is minimum in a range. In the present investigation, Inconel 825 specimen is machined by using brass wire as electrode and the response surface methodology (RSM) is for modeling a second-order response surface to estimate the optimum machining condition to produce the best possible response within the experimental constraints.


2019 ◽  
Vol 969 ◽  
pp. 846-851
Author(s):  
Anil Kumar Bodukuri ◽  
Kesha Eswaraiah ◽  
V. Pradeep

Hybrid metal matrix composites (HMMC) are advanced materials which are not simply depicting in improvement of mechanical properties but also on characteristics of machinability for thorny shapes to machine. Electric discharge machining (EDM) shows a potential technique for machining hybrid metal matrix composites. An investigation is done on hybrid metal matrix composite for response parameters like MRR, TWR by conducting a range of experiments with choosing typical process parameters such as peak current, tool lift, pulse-on time and pulse-off time.


2022 ◽  
Vol 1048 ◽  
pp. 65-71
Author(s):  
Prasanna P. Kulkarni ◽  
B. Siddeswarappa ◽  
Mallikarjun Channalli

Utilization of agricultural by products as a reinforcement which offers a effective consequences on composite materials in the present days. Also a number of the agro waste substances as an ash are secondary filler material for Metal matrix composite materials. In this paper observe changed into achieved on characterization of agriculture waste ashes like Rice husk ash (RHA) and ASA (Areca sheath ash), burned at Controlled temperatures at 650°C in a metallurgical furnace at 3 exceptional durations of instances like 1hr, 2hr, and 3hr. Also each ashes were chemically and physically characterized, consequently decide the proportion of composition. The ensuing ashes have been analyzed the use of chemical evaluation via XRF and volumetric, gravimetric and instrumental test, SEM and EDS to determine their chemical composition which may be similarly used as reinforcement with metal matrix composites. Results acquired that impact of burning temperature and time on Chemical composition, Physical property, Loss of ignition (LOI) and Density. The ashes have been discovered to include excessive percent of silica content of 90% to 92% in Rice husk ash and 74% to 78% in Areca palm leaf sheath ash, after which accompanied through alumina content of 0.89% to 0.98% in each substances at 650oc temperatures respectively, additionally density of 0.98gm/cc for RHA and 1.12gm/cc Areca palm leaf sheath ash. Loss on ignition (LOI) of 4.5% to5.5% acquired on the equal temperature. These consequences suggests that rice husk ash and Areca sheath ash include excessive percent silica and a few alumina and may be utilized in chemical formulations requiring silica which include in metal matrix composites.


2015 ◽  
Vol 813-814 ◽  
pp. 368-375
Author(s):  
Suddala Chandramouli ◽  
Kesha Eswaraiah

Electrical Discharge Machining is a thermo-electric process and one of the advanced methods of machining. Most publications on the EDM process are directed towards non-rotational tools, but rotation of the tool provides a good flushing in the machining zone. In this study, the optimal setting of the process parameters on Rotary Electric Discharge machining (REDM) was determined. The important process parameters that have been selected are peak current, pulse on time, pulse off time and rotational speed of tool with output response as Material Removal Rate (MRR).Taguchi experimental design (L27 orthogonal array) was used to formulate the experimental layout and experiments were conducted on Hardened stainless steel machined with copper tungsten electrode. ANOVA method was used with the help of MINITAB 17 software to analysis the influence of input process parameters on the MRR using Rotary Electric Discharge Machining. The input parameters were optimized in order to obtain maximum MRR, The results of the present work revealed that proper selection of input parameters will play a significant role on MRR.


2014 ◽  
Vol 808 ◽  
pp. 35-41 ◽  
Author(s):  
Amitesh Goswami ◽  
Jatinder Kumar

Nimonic-80A is a nickel based super alloy which is specifically used in aerospace industry for its high strength to weight ratio and corrosion resistance. This paper presents the influence of process parameters of wire cut Electrical Discharge Machining (WEDM) during the machining of Nimonic 80A with brass wire as electrode and optimization of machining parameters on kerf width. Process parameters (pulse-on time, pulse-off time, peak current, spark gap set voltage, wire feed and wire tension) have been investigated using L27orthogonal array. With the assistance of Taguchi quality design, ANOVA and F-test, significant parameters affecting the kerf have been identified. The surface topography of machined samples has been studied in correlation with the rate of input energy into the spark.


2011 ◽  
Vol 383-390 ◽  
pp. 3223-3228 ◽  
Author(s):  
V. Muthuraman ◽  
R. Ramakrishnan

Tungsten carbide - Cobalt (WC-Co) reinforced metal matrix composites are most commonly used as tool and die materials. The machining of WC- Co metal matrix composites is usually done by wire electric discharge machining. However during WEDM of WC-Co samples possibility of defects and electrolyzation is high. Also coating of Cu-Zn tool electrode on machined surface and void space takes place, thereby affecting material integrity. Analyzing the microstructures can remarkably reveal the identification, location, extent and criticality of the defects. In this study WC-Co metal matrix composite was wire electric discharge machined with two critical parameters, pulse on time and delay time. The machined samples were analyzed using micrographs, scanning electron microscope, EDAX and the results tabulated. It was found, that lower pulse-on time and medium pulse-off time leads to less rapid quenching and subsequent improvement in surface finish, less craters, voids. This prevents potential sites for defect and weakening of material by filling with cu-zinc particles for unbounded tungsten particle.


2014 ◽  
Vol 550 ◽  
pp. 53-61
Author(s):  
R.Arun Bharathi ◽  
P.Ashoka Varthanan ◽  
K. Manoj Mathew

The objective of the present work is to predict the optimal set of process parameters such as peak current (IP), pulse on/off time (TON/TOFF) and spark gap voltage (SV) to achieve minimum Surface roughness (Ra), wire consumption rate (WCR) and maximum material removal rate (MRR). In this work, experiments were carried out by pulse arc discharges generated between ZnO coated brass wire and specimen (IS2062 steel) suspended in deionized water dielectric. The experiments were designed based on the above mentioned four factors, each having three levels. Custom design based Response Surface Methodology (RSM) is used in this research. 21 runs of experiments were constructed based on custom design procedure and results of the experimentation were analyzed analytically as well as graphically. Moreover the surface roughness after machining was measured by Taylor Hobson Surtronic device. Second order regression model has been developed for predicting Ra, WCR and MRR in terms of interactive and higher order machining parameters through RSM, utilizing relevant experimental data as obtained through experimentation. The research outcome identifies significant parametersand their effect on process performance on IS2062 steel. The results revealed that peak current, pulse on-time and their interactions have significant effects on Ra, whereas pulse off time and peak current have significant effects on MRR and it is also observed that peak current and interaction between peak current and pulse off time have significant effects on WCR. The adequacy of the above proposed models has been tested through the analysis of variance (ANOVA).


Sign in / Sign up

Export Citation Format

Share Document