Absolute Atomic Scale Measurements of the Gibbsian Interfacial Excess of Solute at Grain Boundaries in an Iron (Silicon) Alloy

1994 ◽  
Vol 155-156 ◽  
pp. 393-396
Author(s):  
B.W. Krakauer ◽  
David N. Seidman
2015 ◽  
Vol 21 (S3) ◽  
pp. 1315-1316 ◽  
Author(s):  
Mukesh Bachhav ◽  
Yan Dong ◽  
Philip Skemer ◽  
Emmanuelle A. Marquis

2001 ◽  
Vol 7 (S2) ◽  
pp. 400-401
Author(s):  
Y. Lei ◽  
Y. Ito ◽  
N. D. Browning

Yttria-stabilized zirconia (YSZ) has been the subject of many experimental and theoretical studies, due to the commercial applications of zirconia-based ceramics in solid state oxide fuel cells. Since the grain boundaries usually dominate the overall macroscopic performance of the bulk material, it is essential to develop a fundamental understanding of their structure-property relationships. Previous research has been performed on the atomic structure of grain boundaries in YSZ, but no precise atomic scale compositional and chemistry characterization has been carried out. Here we report a detailed analytical study of an [001] symmetric 24° bicrystal tilt grain boundary in YSZ prepared with ∼10 mol % Y2O3 by Shinkosha Co., Ltd by the combination of Z-contrast imaging and electron energy loss spectroscopy (EELS).The experimental analysis of the YSZ sample was carried out on a 200kV Schottky field emission JEOL 201 OF STEM/TEM4.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1362
Author(s):  
Cláudio M. Lousada ◽  
Pavel A. Korzhavyi

The segregation of P and S to grain boundaries (GBs) in fcc Cu has implications in diverse physical-chemical properties of the material and this can be of particular high relevance when the material is employed in high performance applications. Here, we studied the segregation of P and S to the symmetric tilt Σ9 (22¯1¯) [110], 38.9° GB of fcc Cu. This GB is characterized by a variety of segregation sites within and near the GB plane, with considerable differences in both atomic site volume and coordination number and geometry. We found that the segregation energies of P and S vary considerably both with distance from the GB plane and sites within the GB plane. The segregation energy is significantly large at the GB plane but drops to almost zero at a distance of only ≈3.5 Å from this. Additionally, for each impurity there are considerable variations in energy (up to 0.6 eV) between segregation sites in the GB plane. These variations have origins both in differences in coordination number and atomic site volume with the effect of coordination number dominating. For sites with the same coordination number, up to a certain atomic site volume, a larger atomic site volume leads to a stronger segregation. After that limit in volume has been reached, a larger volume leads to weaker segregation. The fact that the segregation energy varies with such magnitude within the Σ9 GB plane may have implications in the accumulation of these impurities at these GBs in the material. Because of this, atomic-scale variations of concentration of P and S are expected to occur at the Σ9 GB center and in other GBs with similar features.


Matter ◽  
2020 ◽  
Vol 3 (6) ◽  
pp. 2108-2123
Author(s):  
Shanshan Wang ◽  
Yue Yu ◽  
Shuqing Zhang ◽  
Shishu Zhang ◽  
Hua Xu ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Klimenkov ◽  
P. Vladimirov ◽  
U. Jäntsch ◽  
V. Kuksenko ◽  
R. Rolli ◽  
...  

Abstract The microstructural response of beryllium after neutron irradiation at various temperatures (643–923 K) was systematically studied using analytical transmission electron microscope that together with outcomes from advanced atomistic modelling provides new insights in the mechanisms of microstructural changes in this material. The most prominent feature of microstructural modification is the formation of gas bubbles, which is revealed at all studied irradiation temperatures. Except for the lowest irradiation temperature, gas bubbles have the shape of thin hexagonal prisms with average height and diameter increasing with temperature. A high number density of small bubbles is observed within grains, while significantly larger bubbles are formed along high-angle grain boundaries (GB). Denuded zones (DZ) nearly free from bubbles are found along both high- and low-angle grain boundaries. Precipitations of secondary phases (mainly intermetallic Al-Fe-Be) were observed inside grains, along dislocation lines and at GBs. EDX analysis has revealed homogeneous segregation of chromium and iron along GBs. The observed features are discussed with respect to the available atomistic modelling results. In particular, we present a plausible reasoning for the abundant formation of gas bubbles on intermetallic precipitates, observation of various thickness of zones denuded in gas bubbles and precipitates, and their relation to the atomic scale diffusion mechanisms of solute-vacancy clusters.


2019 ◽  
Vol 167 ◽  
pp. 159-166
Author(s):  
Yadira Arroyo Rojas Dasilva ◽  
Rolf Erni ◽  
Fabio Isa ◽  
Giovanni Isella ◽  
Hans von Känel ◽  
...  

1999 ◽  
Vol 5 (S2) ◽  
pp. 108-109
Author(s):  
K. L. Merkle ◽  
L. J. Thompson

The observation of atomic-scale structures of grain boundaries (GBs) via axial illumination HREM has been largely restricted to tilt GBs, due to the requirement that the electron beam be parallel to a low-index zone axis on both sides of the interface. This condition can be fulfilled for all tilt GBs with misorientation about a low-index direction. The information obtained through HREM studies in many materials has brought important insights concerning the atomic-scale structure of such boundaries. However, it is well known that tilt GBs occupy only an infinitesimally small fraction of the 5-dimensional phase space which describes the macroscopic geometry of all GBs. Therefore, although tilt GBs are very important due to their low energy, it would be usefulto also study twist GBs and general GBs that contain twist and tilt components.We have prepared thin-film Au samples by an epitaxy technique in which (01l) and (001) grains are grown side by side.


Sign in / Sign up

Export Citation Format

Share Document