scholarly journals Segregation of P and S Impurities to A Σ9 Grain Boundary in Cu

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1362
Author(s):  
Cláudio M. Lousada ◽  
Pavel A. Korzhavyi

The segregation of P and S to grain boundaries (GBs) in fcc Cu has implications in diverse physical-chemical properties of the material and this can be of particular high relevance when the material is employed in high performance applications. Here, we studied the segregation of P and S to the symmetric tilt Σ9 (22¯1¯) [110], 38.9° GB of fcc Cu. This GB is characterized by a variety of segregation sites within and near the GB plane, with considerable differences in both atomic site volume and coordination number and geometry. We found that the segregation energies of P and S vary considerably both with distance from the GB plane and sites within the GB plane. The segregation energy is significantly large at the GB plane but drops to almost zero at a distance of only ≈3.5 Å from this. Additionally, for each impurity there are considerable variations in energy (up to 0.6 eV) between segregation sites in the GB plane. These variations have origins both in differences in coordination number and atomic site volume with the effect of coordination number dominating. For sites with the same coordination number, up to a certain atomic site volume, a larger atomic site volume leads to a stronger segregation. After that limit in volume has been reached, a larger volume leads to weaker segregation. The fact that the segregation energy varies with such magnitude within the Σ9 GB plane may have implications in the accumulation of these impurities at these GBs in the material. Because of this, atomic-scale variations of concentration of P and S are expected to occur at the Σ9 GB center and in other GBs with similar features.

2001 ◽  
Vol 7 (S2) ◽  
pp. 400-401
Author(s):  
Y. Lei ◽  
Y. Ito ◽  
N. D. Browning

Yttria-stabilized zirconia (YSZ) has been the subject of many experimental and theoretical studies, due to the commercial applications of zirconia-based ceramics in solid state oxide fuel cells. Since the grain boundaries usually dominate the overall macroscopic performance of the bulk material, it is essential to develop a fundamental understanding of their structure-property relationships. Previous research has been performed on the atomic structure of grain boundaries in YSZ, but no precise atomic scale compositional and chemistry characterization has been carried out. Here we report a detailed analytical study of an [001] symmetric 24° bicrystal tilt grain boundary in YSZ prepared with ∼10 mol % Y2O3 by Shinkosha Co., Ltd by the combination of Z-contrast imaging and electron energy loss spectroscopy (EELS).The experimental analysis of the YSZ sample was carried out on a 200kV Schottky field emission JEOL 201 OF STEM/TEM4.


2002 ◽  
Vol 43 (7) ◽  
pp. 1561-1565 ◽  
Author(s):  
Tsuyoshi Watanabe ◽  
Hidehiro Yoshida ◽  
Yuichi Ikuhara ◽  
Taketo Sakuma ◽  
Hiroyuki Muto ◽  
...  

2007 ◽  
Vol 1012 ◽  
Author(s):  
Uwe Rau ◽  
Uwe Rau

AbstractTwo-dimensional numerical device simulations investigate the influence of grain boundaries on the performance of Cu(In,Ga)Se2 solar cells focussing on the question whether or not grain boundaries can improve the efficiency of those devices. The results unveil the following statements: (i) The mere introduction of a grain boundary by adding localized defects into a device that has a high performance from the beginning is not beneficial. (ii) Polycrystalline solar cells can outperform monocrystalline ones, if the total number of defects is equal in both devices. I.e. a given number of recombination centers is better dealt with if these defects are concentrated at the grain boundary rather than homogeneously distributed in the bulk. (iii) A significant improvement of carrier collection via the grain boundaries is found if the bulk of the devices is assumed as relatively poor. In this situation, addition of defects that are not much recombination ac-tive but provide a large charge density at the grain boundaries can improve the device performance. (iv) Passivation of grain boundaries by an internal band offset in the valence band is effective only if the internal barrier amounts at least to 300 meV.


2013 ◽  
Vol 61 (4) ◽  
pp. 1048-1060 ◽  
Author(s):  
Eric R. Homer ◽  
Stephen M. Foiles ◽  
Elizabeth A. Holm ◽  
David L. Olmsted

2012 ◽  
Vol 715-716 ◽  
pp. 179-179
Author(s):  
David L. Olmsted ◽  
Elizabeth A. Holm ◽  
Stephen M. Foiles

Grain boundary properties depend on both composition and structure. To test the relative contributions of composition and structure to the grain boundary energy, we calculated the energy of 388 grain boundaries in four elemental, fcc metals: Ni, Al, Au and Cu. We constructed atomic-scale bicrystals of each boundary and subjected them to a rigorous energy minimization process to determine the lowest energy structure. Typically, several thousand boundary configurations were examined for each boundary in each element.


1999 ◽  
Vol 581 ◽  
Author(s):  
Matthias Abraham ◽  
Mattias Thuvandert ◽  
Helen M. Lane ◽  
Alfred Cerezo ◽  
George D.W. Smith

ABSTRACTNanocrystalline Ni-P alloys produced by electrodeposition have been characterised by three-dimensional atom probe (3DAP) analysis. In the as-deposited materials, there are indications of some variation in P concentration between grains and segregation to grain boundaries. After heat treatment however, strong grain boundary segregation and the formation of Ni3P precipitates have been observed.


2004 ◽  
Vol 821 ◽  
Author(s):  
Markus J. Buehler ◽  
Alexander Hartmaier ◽  
Huajian Gao

AbstractIn a recent study of diffusional creep in polycrystalline thin films deposited on substrates, we have discovered a new class of defects called the grain boundary diffusion wedges (Gao et al., Acta Mat. 47, pp. 2865-2878, 1999). These diffusion wedges are formed by stress driven mass transport between the free surface of the film and the grain boundaries during the process of substrate-constrained grain boundary diffusion. The mathematical modeling involves solution of integro-differential equations representing a strong coupling between elasticity and diffusion. The solution can be decomposed into diffusional eigenmodes reminiscent of crack-like opening displacement along the grain boundary which leads to a singular stress field at the root of the grain boundary. We find that the theoretical analysis successfully explains the difference between the mechanical behaviors of passivated and unpassivated copper films during thermal cycling on a silicon substrate. An important implication of our theoretical analysis is that dislocations with Burgers vector parallel to the interface can be nucleated at the root of the grain boundary. This is a new dislocation mechanism in thin films which contrasts to the well known Mathews-Freund-Nix mechanism of threading dislocation propagation. Recent TEM experiments at the Max Planck Institute for Metals Research have shown that, while threading dislocations dominate in passivated metal films, parallel glide dislocations begin to dominate in unpassivated copper films with thickness below 400 nm. This is consistent with our theoretical predictions. We have developed large scale molecular dynamics simulations of grain boundary diffusion wedges to clarify the nucleation mechanisms of parallel glide in thin films. Such atomic scale simulations of thin film diffusion not only show results which are consistent with both continuum theoretical and experimental studies, but also revealed the atomic processes of dislocation nucleation, climb, glide and storage in grain boundaries. The study should have far reaching implications for modeling deformation and diffusion in micro- and nanostructured materials.


1998 ◽  
Vol 4 (S2) ◽  
pp. 688-689
Author(s):  
S. J. Pennycook ◽  
J. Buban ◽  
C. Prouteau ◽  
M. F. Chisholm ◽  
P. D. Nellist ◽  
...  

Due to the extemely short coherence lengths of the high-Tc superconductors (around 30 Å in the a-b plane), defects such as grain boundaries are obvious barriers to the flow of supercurrent. Within a few months of the discovery of these materials, it was shown how the critical current dropped four orders of magnitude as the grain boundary misorientaion increased from zero to 45°. Even today, there is no quantitative understanding of this behavior. A qualitative understanding is however possible through atomic resolution Z-contrast imaging on YBa2cu3O7-δ and SrTiO3 bicrystal grain boundaries, combined with bond-valence-sum analysis.The Z-contrast image of a YBa2cu3O7-δ low angle grain boundary in Fig. 1 shows the same kind of reconstructed dislocation cores as seen in SrTiO3, containing reconstructions on both the Cu and Y/Ba sublattices.


Author(s):  
Stuart McKernan ◽  
C. Barry Carter

General tilt grain boundaries can be viewed in terms of small structural units of varying complexity. High-resolution electron microscope (HREM) images of these boundaries in many materials show this repetitive similarity of the atomic structure at the boundary plane. The structure of particular grain boundaries has been examined for several special cases and commonly observed configurations include symmetric tilt grain boundaries and asymmetric tilt grain boundaries with one grain having a prominent, low-index facet. Several different configurations of the boundary structure may possibly occur, even in the same grain boundary. There are thus many possible ways to assemble the basic structural units to form a grain boundary. These structural units and their distribution have traditionally been examined by high-resolution electron microscopy. The images of the projection of the atomic columns (or the tunnels between atomic columns) providing a template for constructing “ball-and-stick ” models of the interface.


2006 ◽  
Vol 317-318 ◽  
pp. 415-418 ◽  
Author(s):  
Tsubasa Nakagawa ◽  
Isao Sakaguchi ◽  
Katsuyuki Matsunaga ◽  
Takahisa Yamamoto ◽  
Hajime Haneda ◽  
...  

Grain boundary diffusion coefficients of oxygen (δDgb) at 1793K in high purity α-alumina bicrystals with Σ7{2 _ ,310}/[0001] and Σ31{7 _ ,1140}/[0001] symmetric tilt grain boundaries were measured by means of the isotopic exchange and diffusion depth profiling using SIMS. δDgb of both grain boundaries were determined to be 7.1x10-24 [m3/sec] for Σ7 grain boundary and 5.3 x10-24 [m3/sec] for Σ31 grain boundary, respectively. These results indicate that Σ values do not directly relate to grain boundary diffusion properties.


Sign in / Sign up

Export Citation Format

Share Document