Structure Changes in Stainless Steels Used in Nuclear Reactors and Turbo Generators after Minor Low Cycle Fatigue Deformation

2005 ◽  
Vol 475-479 ◽  
pp. 1487-1490 ◽  
Author(s):  
Tamaz Eterashvili ◽  
T. Dzigrashvili ◽  
M. Vardosanidze

The structure of austenitic steel before and after 25% of total number of cycles of low cycle fatigue tests conducted at room temperature is studied using TEM. It is shown that the cyclic deformation of the steel proceeds heterogeneously. The microstructure of the steel is investigated in the area between the deformed and undistorted parts of the samples. The crystallography of the observed twins and the slip bands is specified. The value of local plastic deformation within a micro area of a grain is measured, and the influence of microstructure on crack initiation is discussed.

2005 ◽  
Vol 475-479 ◽  
pp. 3505-3508
Author(s):  
Tamaz Eterashvili ◽  
T. Dzigrashvili ◽  
M. Vardosanidze

The structure of austenitic steel before and after 25% of total number of cycles of low cycle fatigue tests conducted at room temperature is studied using TEM. It is shown that the cyclic deformation of the steel proceeds heterogeneously. The microstructure of the steel is investigated in the area between the deformed and undistorted parts of the samples. The crystallography of the observed twins and the slip bands is specified. The value of local plastic deformation within a micro area of a grain is measured, and the influence of microstructure on crack initiation is discussed.


2007 ◽  
Vol 348-349 ◽  
pp. 385-388 ◽  
Author(s):  
Tamaz Eterashvili ◽  
T. Dzigrashvili ◽  
M. Vardosanidze

This study deals with the SEM and optical microscopic characterization of fatigue plastic deformation process during fatigue crack initiation to understand where, why and how cracks initiate under conditions of low cycle fatigue. Samples were prepared from the 13Х11Н2В2МФ high-chromium stainless steel used for fusion power applications. The low-cycle tests were conducted at room temperature with the standard V-notched samples prepared from conventional stainless steel. The following characteristics were studied during fatigue tests: 1 macrocrack propagation, 2. interaction between macrocrack and isolated microcracks, 3. interaction between macrocrack and slip bands, 4. interaction between macrocrack and microstructure elements of the steel. The above experiments show that during macrocrack propagation a plastic zone is formed around it, where isolated microcracks and slip bands of 2-3 different directions are observed. Measurement of plastic zone dimensions after different number of cycles of deformation show that plastic zone size increases during the first stage of cyclic deformation (until definite number of cycles are completed), and then remains unchanged. The observations show that main crack is composed of individual micro-components, the lengths of which are in a good correlation with the dimensions of microstructure elements of the steel (former austenite grains, martensite crystals). It was revealed that during growth, as a rule, macrocrack rarely propagates along isolated microcracks and slip bands. Direction of macrocrack propagation changes while passing from one microstructure element to another, so that main direction is the same. No preferable transcrystalline or intercrystalline propagation of macrocrack has been observed in the investigated steel. It is shown that after subsequent fatigue tests, dimensions of the previously created slip bands increase, and additional new slip band are also formed. The sites and frequency of slip bands’ formation in plastic zone are also studied. It was observed that the boundaries and mainly the sites of intersection of martensite crystals are the sites of isolated (rough) microcracks’ formation. The dimensions of slip bands are comparable with those of martensite crystals. The angles between the main crack propagation direction and slip bands varied from 30o to 60o, however, most of the slip bands were oriented at 45o to the main crack. Based on the obtained results a conclusion is made that plastic deformation in samples go inhomogeneously. In plastic zones, along with the heavily deformed areas, almost non-deformed areas are also observed. The speed of fatigue fracture increases with the increase in frequency and amplitude of deformations. Generally, the annealed samples are destructed prematurely in comparison with non-annealed ones of the investigated steel.


2011 ◽  
Vol 291-294 ◽  
pp. 1106-1109 ◽  
Author(s):  
Grzegorz Golański ◽  
Krzysztof Werner ◽  
Stanisław Mroziński

The report treats of the low cycle fatigue (LCF) behaviour of GX12CrMoVNbN9-1 (GP91) cast steel after heat treatment (1040°C/12h/oil + 760°C/12h/air + 750°C/8h/furnace). Fatigue tests were carried out at room temperature for five levels of the controlled total strain amplitude εac = 0.25, 0.30, 0.35, 0.50 and 0.60 %. The research performed within the scope of LCF has shown in general that the investigated cast steel was subject to strong cyclic weakening, revealing no stabilization period at the same time. At the final stage of fatigue there was quick weakening of the material which proceeded till its destruction. The growth of amplitude εac resulted in reducing the number of cycles till the destruction stage.


2010 ◽  
Vol 636-637 ◽  
pp. 1137-1142 ◽  
Author(s):  
Julien Schwartz ◽  
Olivier Fandeur ◽  
Colette Rey

Initiation of intragranular cracks during low cycle fatigue is governed by complex microstructural phenomena. Depending on the loading amplitude, number of cycles, lattice structure and/or chemical composition, different dislocation structures (veins, cells or Persistent Slip Bands) develop and induce heterogeneous localization of strain and stress in the material. For a better comprehension of crack initiation in 316LN stainless steel, low cycle fatigue tests and numerical simulations were performed. Specimens of 316LN steel with polished shallow notch were cycled with constant loading amplitude and Persistant Slip Bands were identified by SEM observations. In parallel, numerical studies were carried out with the model of cristalline plasticity CristalECP. Simulations were performed on 3D polycristalline aggregates of 316LN steel with the finite elements code Abaqus® and Cast3m®. The results show a heterogeneous localization of strain in bands. For a more precise computation of the mechanical fields and to introdruce a grain size effect, Geometrically Necessary Dislocations were introduced in CristalECP. The GNDs are directly related and computed with the lattice curvature.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6741
Author(s):  
Grzegorz Junak ◽  
Anżelina Marek ◽  
Michał Paduchowicz

This paper presents the results of tests conducted on the HR6W (23Cr-45Ni-6W-Nb-Ti-B) alloy under low-cycle fatigue at room temperature and at 650 °C. Fatigue tests were carried out at constant values of the total strain ranges. The alloy under low-cycle fatigue showed cyclic strengthening both at room temperature and at 650 °C. The degree of HR6W strengthening described by coefficient n’ was higher at higher temperatures. At the same time, its fatigue life Nf at room temperature was, depending on the range of total strain adopted in the tests, several times higher than observed at 650 °C.


Author(s):  
Patricia Pappa ◽  
George E. Varelis ◽  
Spyros A. Karamanos ◽  
Arnold M. Gresnigt

In this paper the low cycle fatigue behaviour of steel elbows under strong cyclic loading conditions (in-plane and out-of-plane) is examined. The investigation is conducted through advanced finite element analysis tools, supported by real-scale test data for in-plane bending. The numerical results are successfully compared with the experimental measurements. In addition, a parametric study is conducted, which is aimed at investigating the effects of the diameter-to-thickness ratio on the low-cycle fatigue of elbows, focusing on the stress and strain variations. Strain gauge measurements are compared with finite element models. Upon calculation of local strain variation at the critical location, the number of cycles to fracture can be estimated.


2006 ◽  
Vol 326-328 ◽  
pp. 1011-1014 ◽  
Author(s):  
Ill Seok Jeong ◽  
Sang Jai Kim ◽  
Taek Ho Song ◽  
Sung Yull Hong

For developing fatigue design curve of cast stainless steel that is used in piping material of nuclear power plants, a low-cycle fatigue test rig was built. It is capable of performing tests in pressurized high temperature water environment of PWR. Cylindrical solid fatigue specimens of CF8M were used for the strain-controlled environmental fatigue tests. Fatigue life was measured in terms of the number of cycles with the variation of strain amplitude at 0.04%/s strain rates. The disparity between target length and measured length of specimens was corrected by using finite element method. The corrected test results showed similar fatigue life trend with other previous results.


1970 ◽  
Vol 92 (1) ◽  
pp. 35-51 ◽  
Author(s):  
J. Dubuc ◽  
J. R. Vanasse ◽  
A. Biron ◽  
A. Bazergui

A number of low-cycle fatigue tests has been carried out at room temperature on two materials commonly used in pressure vessel fabrication. For strain-controlled tests, the influence of different mean strains is studied; similarly, the effect of varying the mean stress is analyzed for stress-controlled tests. Relations involving elastic and plastic strain ranges, and the variations of strains or stresses during the fatigue tests are discussed.


Sign in / Sign up

Export Citation Format

Share Document