Low Cycle Fatigue Behaviour of GX12CrMoVNbN9 -1 Cast Steel at Room Temperature

2011 ◽  
Vol 291-294 ◽  
pp. 1106-1109 ◽  
Author(s):  
Grzegorz Golański ◽  
Krzysztof Werner ◽  
Stanisław Mroziński

The report treats of the low cycle fatigue (LCF) behaviour of GX12CrMoVNbN9-1 (GP91) cast steel after heat treatment (1040°C/12h/oil + 760°C/12h/air + 750°C/8h/furnace). Fatigue tests were carried out at room temperature for five levels of the controlled total strain amplitude εac = 0.25, 0.30, 0.35, 0.50 and 0.60 %. The research performed within the scope of LCF has shown in general that the investigated cast steel was subject to strong cyclic weakening, revealing no stabilization period at the same time. At the final stage of fatigue there was quick weakening of the material which proceeded till its destruction. The growth of amplitude εac resulted in reducing the number of cycles till the destruction stage.

2015 ◽  
Vol 226 ◽  
pp. 69-74
Author(s):  
Kazimierz J. Ducki ◽  
Marek Cieśla ◽  
Grzegorz Junak ◽  
Lilianna Wojtynek

The paper presents the results of investigations of the microstructure and fatigue behaviour of two newly invented Cr-Ni and Cr-Ni-Mn austenitic steels of 13/13 and 12/8/8 type strengthened through carbide particle precipitation. The specimens of the investigated steels were subjected to tests after heat treatment, i.e. solution heat treatment (1200°C/0.5 h/water) and aged at a temperature of 700°C for 12 h, with cooling in air. The heat treated specimens were then subjected to low-cycle fatigue tests (LCF), carried out at room temperature and at an increased temperature of 600°C. Diagrams of fatigue characteristics of the investigated steels at room temperature as well as at elevated temperature have been worked up. It has been found that during low-cycle fatigue tests, at both temperatures, the investigated austenitic steels indicated a fatigue softening effect. The results of LCF at room temperature showed that the fatigue durability (Nt) of both austenitic steels is located in the range 0.8÷1.3×103 cycles. The results of low-cycle fatigue tests at an increased temperature 600°C indicated that the fatigue durability of the investigated steel was lower, and is located in the range Nt = 0.5÷0.6×103 cycles. It has been pointed out that the investigated austenitic steels are characterized by a stability of structure in conditions of cyclic fatigue.


2011 ◽  
Vol 396-398 ◽  
pp. 326-329 ◽  
Author(s):  
Grzegorz Golański ◽  
Krzysztof Werner ◽  
Stanisław Mroziński

The paper treats of the low cycle fatigue (LCF) behaviour of GX12CrMoVNbN9-1 (GP91) cast steel after heat treatment. Fatigue tests at the temperature of 600oC within the scope of small amount of cycles to failure were carried out for five levels of controlled amplitude of total strain εac = 0.25, 0.30, 0.35, 0.50 and 0.60 %. The investigated cast steel within the scope of low cycle fatigue life reveals a three-stage course of changes in strength and strain. In the given scope of low cycle fatigue for GP91 cast steel, cyclic weakening was observed without the occurrence of stabilization period of its properties.


Author(s):  
Patricia Pappa ◽  
George E. Varelis ◽  
Spyros A. Karamanos ◽  
Arnold M. Gresnigt

In this paper the low cycle fatigue behaviour of steel elbows under strong cyclic loading conditions (in-plane and out-of-plane) is examined. The investigation is conducted through advanced finite element analysis tools, supported by real-scale test data for in-plane bending. The numerical results are successfully compared with the experimental measurements. In addition, a parametric study is conducted, which is aimed at investigating the effects of the diameter-to-thickness ratio on the low-cycle fatigue of elbows, focusing on the stress and strain variations. Strain gauge measurements are compared with finite element models. Upon calculation of local strain variation at the critical location, the number of cycles to fracture can be estimated.


2005 ◽  
Vol 475-479 ◽  
pp. 3505-3508
Author(s):  
Tamaz Eterashvili ◽  
T. Dzigrashvili ◽  
M. Vardosanidze

The structure of austenitic steel before and after 25% of total number of cycles of low cycle fatigue tests conducted at room temperature is studied using TEM. It is shown that the cyclic deformation of the steel proceeds heterogeneously. The microstructure of the steel is investigated in the area between the deformed and undistorted parts of the samples. The crystallography of the observed twins and the slip bands is specified. The value of local plastic deformation within a micro area of a grain is measured, and the influence of microstructure on crack initiation is discussed.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Florian Gang ◽  
Manja Krüger ◽  
Alexandra Laskowsky ◽  
Heike Rühe ◽  
Joachim H. Schneibel ◽  
...  

ABSTRACTThe low cycle fatigue (LCF) behaviour of two cast as well as two hot extruded Fe3Al-based iron aluminide alloys, either with or without Cr, is investigated. All four alloys contain microalloying additions of Zr, Nb, C and B. Fatigue tests were carried out under strain control for strain amplitudes in the range of εa = 0.1 – 0.4 % for the cast alloys and εa = 0.1 – 0.7 % for the extruded materials, at frequencies of 1 Hz (extruded Fe3Al) and 3 Hz (all other alloys) and at room temperature and 300 °C. Within the first cycles all alloys show strong cyclic hardening. Furthermore the fatigue strain – fatigue life curves are steeper at 300 °C than at room temperature, showing increased fatigue strength at low cycle numbers due to increasing ductility and decreased fatigue strength at increasing cycle numbers because of reduced yield strength. Cr is found to have only a negligible influence on the fatigue behaviour of Fe3Al-based alloys. Comparison between the differently processed materials shows superior LCF properties of the hot extruded iron aluminides due to significantly smaller grain sizes.


2006 ◽  
Vol 118 ◽  
pp. 71-76 ◽  
Author(s):  
Jae Keun Hong ◽  
Ji Hong Park ◽  
Nho Kwang Park ◽  
Seong Jun Kim ◽  
Chung Yun Kang

Effects of solution treatment on the microstructure and mechanical properties in wrought Alloy 718 were investigated. For the improvement of tensile and fatigue properties of wrought Alloy 718, a modified solution heat treatment(MSHT), heating at 1000 for 3 minutes followed by furnace cooling at the rate of 3/minute and holding at 985 for 8 minutes, was proposed. This treatment was performed repeatedly 3 times and the samples were subject to the standard aging treatment. For the purpose of comparison, a standard heat treatment(SHT) was also performed. The microstructures of modified solution heat treated specimens showed that small spherical shaped δ- phases were precipitated without grain growth, and the amount of δ-phases was smaller than that of standard heat treated specimens. However, the δ-phases of the standard heat-treated specimen showed needle-like morphologies. Tensile and low cycle fatigue tests were performed on both modified heat-treated and standard heat-treated specimens at room temperature, 350 and 650. Low cycle fatigue tests on the modified heat treated specimens showed promising results without reduction of strength. However, the tensile properties of modified solution treated specimens was almost the same as those of standard heat treated materials both at room temperature and 650.


2005 ◽  
Vol 475-479 ◽  
pp. 1487-1490 ◽  
Author(s):  
Tamaz Eterashvili ◽  
T. Dzigrashvili ◽  
M. Vardosanidze

The structure of austenitic steel before and after 25% of total number of cycles of low cycle fatigue tests conducted at room temperature is studied using TEM. It is shown that the cyclic deformation of the steel proceeds heterogeneously. The microstructure of the steel is investigated in the area between the deformed and undistorted parts of the samples. The crystallography of the observed twins and the slip bands is specified. The value of local plastic deformation within a micro area of a grain is measured, and the influence of microstructure on crack initiation is discussed.


2013 ◽  
Vol 592-593 ◽  
pp. 708-711
Author(s):  
Stanisław Mroziński ◽  
Grzegorz Golański ◽  
Krzysztof Werner

The paper presents the results of research on the changes in microstructure of GX12CrMoVNbN9-1 cast steel subject to aging at the temperature of 600°C and holding time of 8000 hours, followed by low-cycle fatigue. The characteristics of the microstructure of the examined cast steel after ageing and low-cycle fatigue was described using transmission electron microscopy (study of the dislocation microstructure) and morphology of precipitations. It has been shown that low cycle fatigue leads to the matrix softening as a result of the processes of recovery, polygonization and repolygonization. Moreover, the processes of precipitation of Laves phase and coagulation of M23C6 carbides were observed in the microstructure. Intensity of these processes depended not only on the temperature of fatigue tests, but also on the level of total strain amplitude εac.


2010 ◽  
Vol 638-642 ◽  
pp. 455-460 ◽  
Author(s):  
A. Rutecka ◽  
L. Dietrich ◽  
Zbigniew L. Kowalewski

The AlSi8Cu3 and AlSi7MgCu0.5 cast aluminium alloys of different composition and heat treatment were investigated to verify their applicability as cylinder heads in the car engines [1]. Creep tests under the step-increased stresses at different temperatures, and low cycle fatigue (LCF) tests for a range of strain amplitudes and temperatures were carried out. The results exhibit a significant influence of the heat treatment on the mechanical properties of the AlSi8Cu3 and AlSi7MgCu0.5. An interesting fact is that the properties strongly depend on the type of quenching. Lower creep resistance (higher strain rates) and lower stress response during fatigue tests were observed for the air quenched materials in comparison to those in the water quenched. Cyclic hardening/softening were also observed during the LCF tests due to the heat treatment applied. The mechanical properties determined during the tests can be used to identify new constitutive equations and to verify existing numerical models.


2018 ◽  
Vol 157 ◽  
pp. 05013 ◽  
Author(s):  
Peter Kopas ◽  
Milan Sága ◽  
František Nový ◽  
Bohuš Leitner

The article presents the results of research on low cycle fatigue strength of laser welded joints vs. non-welded material of high-strength steel DOMEX 700 MC. The tests were performed under load controlled using the total strain amplitude ɛac. The operating principle of the special electro-mechanic fatigue testing equipment with a suitable clamping system was working on 35 Hz frequency. Fatigue life analysis was conducted based on the Manson-Coffin-Basquin equation, which made it possible to determine fatigue parameters. Studies have shown differences in the fatigue life of original specimens and laser welded joints analysed, where laser welded joints showed lower fatigue resistance. In this article a numerical analysis of stresses generated in bending fatigue specimens has been performed employing the commercially available FEM-program ADINA.


Sign in / Sign up

Export Citation Format

Share Document