Centrifugal Casting Practice and Microstructure and Mechanical Properties of a 2205 Duplex Stainless Steel

2005 ◽  
Vol 475-479 ◽  
pp. 2527-2532 ◽  
Author(s):  
Sang Mok Lee ◽  
S. Yang ◽  
S.T. Kim ◽  
Y.S. Park ◽  
B.M. Moon

Microstructural features, mechanical properties, and corrosion properties of a SAF2205 duplex stainless steel (DSS) were systematically investigated as functions of cooling rate during casting and heat treatment conditions. The choice of a duplex stainless steel was a SAF2205 alloy, of which composition is 0.03C, 21~23Cr, 4.5~6.5Ni, 2.5~3.5Mo, 0.08~0.2N, 1.0Si, and 2.0Mn with remaining Fe. A 5-stepped sand mold and the permanent Y-block mold were used to check the effect of cooling rate during solidification. The microstructural characteristics, such as grain size, the d/γ ratio, the existence of the carbides and σ phase has been noticed to greatly change with the variation of cooling rate during the casting procedure. Various heat treatment conditions were also examined to achieve the optimized mechanical properties of DSS. Based on the preliminary examination, the feasibility study of utilization of centrifugal casting has been carried out for the production of better quality DSS pipe components. Melting and casting practices of DSS during centrifugal casting in an air atmosphere were systematically investigated in order to obtain the optimized process parameters.

2020 ◽  
Vol 34 (25) ◽  
pp. 2050269
Author(s):  
Yuqi Mao ◽  
Yuehong Zheng ◽  
Yu Shi ◽  
Min Zhu ◽  
Saitejin ◽  
...  

In order to further expand the application scope of 2205 duplex stainless steel (DSS), its microstructure and mechanical properties require as much attention as its corrosion properties. In this study, 2205DSSs were prepared by aluminothermic reaction and the microstructures and mechanical behavior of the rolled alloys were analyzed. The micro-nanocrystals composite structure appears in the alloys after rough rolling with deformation of 40% at [Formula: see text]C followed by finishing rolling with deformation of 30%, 50% and 70% at [Formula: see text]C. With the increase of rolling deformation, the two-phase structure is gradually elongated, the average size of the two-phase grains is gradually increased, and some [Formula: see text] phase will change to [Formula: see text] phase, the volume fraction of [Formula: see text] phase is gradually increased, and the distribution of nanocrystals is gradually uniform. Meanwhile, the fracture mode of alloy is gradually changed from ductile fracture to brittle fracture. The strength and hardness of the alloy increase gradually.


2014 ◽  
Vol 804 ◽  
pp. 277-280 ◽  
Author(s):  
Ren Long Tao ◽  
Jie Liu ◽  
Guang Wei Fan ◽  
Xu Chang

Thermal simulation by GLEEBLE3800 is adopted to obtain the simulated welding HAZ microstructures in SAF 2507 duplex stainless steel with the GLEEBLE3800 thermal simulation machine. The simulation peak temperatures are 800oC, 900oC, 950oC, 1000oC, 1050oC and 1100oC, The cooling velocities are t12/8=3.6s, 7s, 20s and 40s (t12/8 is cooling time of 1200oC to 800oC which is used to describe the cooling rate). The results indicate that the peak temperatures have significant influence on the microstructures of austenite and ferrite. At 900oC, the content of σ phase precipitation reaches the maximum, which is distributed mainly in α or at α/γ junction. When the temperature is set above 1050oC, the σ phase disappears. A faster cooling rate passing through 800~1050oC is required to avoid brittle σ phase precipitation.


2013 ◽  
Vol 746 ◽  
pp. 467-472 ◽  
Author(s):  
In June Moon ◽  
Bok Su Jang ◽  
Jin Hyun Koh

The purpose of this study was to investigate the effect of heat treatment (930°C, 1080°C, 1230°C) followed by quenching on the pitting corrosion resistance, sigma phase precipitation, and microstructural change of a super duplex stainless steel (UNS S32750) welds made by gas tungsten arc (GTA). Based on the microstructural examination, the σ phase was formed in welds heat treated at 930°C while there were little σ phases formed in welds experienced the relatively fast cooling from 1080°C and 1230°C. Accordingly, the most weight loss due to pitting corrosion occurred in the as received base and weld metals heat treated at 930°C. It was confirmed that the pitting corrosion occurred in the phase boundaries of ferrite/sigma and austenite/sigma.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 317 ◽  
Author(s):  
Qingdong Zhang ◽  
Sida Ma ◽  
Tao Jing

Z3CN20.09M cast duplex stainless steel (CDSS) has been used for primary coolant water pipes in pressurized water reactors due to its excellent mechanical properties. Such pipes operate at an elevated service temperature (~320 °C) and experience issues of thermal aging embrittlement. In situ tensile tests were conducted to investigate the deformation mechanisms of Z3CN20.09M CDSS after long-term thermal aging at 475 °C for up to 2000 h in both optical microscope and scanning electron microscope at 320 °C. For the 320 °C tests, the tensile stress and other mechanical properties, e.g. the yield stress and the ultimate tensile strength, increase during the thermal aging process and recover to almost the same level as the unaged condition after annealing heat-treatment, which is caused by the formation and dissolution of precipitation during aging and anneal heat-treatment, respectively. For the slip mechanism, straight slip lines form first in the austenite phase. When these slip lines reach the austenite/ferrite interface, three kinds of slip systems are found in the ferrite phase. During the fracture process, the austenite phase is torn apart and the ferrite phase shows a significant elongation. The role of the ferrite phase is to hold the austenite matrix, thus increasing the tensile strength of this steel.


2021 ◽  
Vol 63 (9) ◽  
pp. 791-796
Author(s):  
Lei Tian ◽  
Zhanqi Gao ◽  
Yongdian Han

Abstract To investigate the influence of post-weld heat treatment on the microstructure and corrosion properties of super duplex stainless steel welded joints, multi-layer multi-pass welding of 2507 super duplex stainless steel by tungsten argon arc welding was performed using an ER2594 welding wire. The microstructures of the welded joints before and after post-weld heat treatment at 1150 °C, 1170 °C and 1190 °C were observed, and the mechanical and corrosion properties were tested. The post-weld heat treatment changed the austenite content and morphology of the welded joint and improved the corrosion resistance of different parts of the weld metal. The choice of various solution heat treatment temperatures affected the change in austenite content in the weld zone and the degree of diffusion and homogenization of the alloy elements. After post-weld heat treatment at 1170 °C, the two-phase ratios in each area of the weld were the most suitable and uniform, and the overall mechanical and corrosion properties of the joint were more uniform.


Sign in / Sign up

Export Citation Format

Share Document