Crystallization during Superplastic Deformation in a Zr65Al10Ni10Cu15 Glass Metallic Alloy

2005 ◽  
Vol 475-479 ◽  
pp. 2981-2986
Author(s):  
Woo Jin Kim ◽  
H.S. Kim ◽  
Ha Guk Jeong

Superplastic behavior of the Zr65Al10Ni10Cu15 glass metallic alloy produced by powdermetallurgy method was examined in the supercooled liquid region. Stress-strain and stress-strain rate relationships showed that Newtonian viscous flow governed the plastic flow until strain hardening took place. The large strain hardening was proved to a result of occurrence of crystallization during deformation.

1999 ◽  
Vol 601 ◽  
Author(s):  
Y. Kawamura ◽  
A. Inoue

AbstractWe have investigated the flow stress and elongation of superplastic deformation in a La55Al25Ni20 (at%) metallic glass that has a wide supercooled liquid region of 72 K before crystallization. The superplasticity that appeared in the supercooled liquid region was generated by the Newtonian viscous flow that exhibits the m value of unity. The elongation to failure was restricted by the transition of the Newtonian flow to non-Newtonian one and the crystallization during deformation. We succeeded in establishing the constitutive formulation of the flow stress in the supercooled liquid region. Its formulation was expressed very well by a stretched exponential function σflow=Dε exp(H*/RT) [1-exp(E/{ε exp(H**/RT)}0.82)]. Formulations describing the elongation to failure in constant-strain-rate and constant-crosshead velocity tests were, moreover, established. It was found from the simulation that the maximum elongation in the constant-strain-rate test reached more than 106% which was two orders of magnitude larger than that in the constant-crosshead-velocity test.


2006 ◽  
Vol 512 ◽  
pp. 37-40 ◽  
Author(s):  
Takeshi Nagase ◽  
Mitsuo Nakamura ◽  
Yukichi Umakoshi

Superplastic viscous deformation and thermal crystallization behavior of supercooled liquid in Zr60.0Al15.0Ni25.0 metallic glass were investigated. The temperature interval of the supercooled liquid region (∆Tx) was 83 K. The supercooled liquid showed significant viscous plasticity, resulting in large elongation and high strain rate deformation. The stress-strain behavior can be classified into three types: stress overshoot, stable viscous flow with constant flow stress and strain hardening. The strain hardening is due to the precipitation of Zr6Al2Ni crystalline phase with ellipsoidal morphology. Superplastic viscous deformation behavior is very sensitive to thermal crystallization as well as to deformation temperature and strain rate.


2014 ◽  
Vol 893 ◽  
pp. 449-456
Author(s):  
Zhi Hui Ma ◽  
Hong Juan Su ◽  
Xiang Huai Dong

Linear and nonlinear viscoelastic behaviors of a Zr55Al10Ni5Cu30bulk metallic glass are investigated through experiments and described by the fictive stress model. Systematic deviations between the predicted stress-strain curves by fictive stress model and by the experimental results were found. In order to describe the flow stress curves of the Zr55Al10Ni5Cu30BMG at different temperatures and strain rates in the supercooled liquid region more precisely, the fictive stress model was modified. The parameters of the model were optimized by the genetic algorithm, and a time relaxation factor Z' was introduced. The comparisons of the predicted compressive stress-strain curves and extrusion load-punch stroke curve by the modified fictive stress model with the experimental data show good agreements.


1998 ◽  
Vol 554 ◽  
Author(s):  
T. G. Nieh ◽  
J. G. Wang ◽  
J. Wadsworth ◽  
T. Mukai ◽  
C. T. Liu

AbstractThe thermal properties of an amorphous alloy (composition in at.%: Zr-10Al-5Ti-17.9Cu-14.6Ni), and particularly the glass transition and crystallization temperature as a function of heating rate, were characterized using Differential Scanning Calorimetry (DSC). X-ray diffraction analyses and Transmission Electron Microscopy were also conducted on samples heat-treated at different temperatures for comparison with the DSC results. Superplasticity in the alloy was studied at 410°C, a temperature within the supercooled liquid region. Both single strain rate and strain rate cycling tests in tension were carried out to investigate the deformation behavior of the alloy in the supercooled liquid region. The experimental results indicated that the alloy did not behave like a Newtonian fluid.


2005 ◽  
Vol 20 (6) ◽  
pp. 1447-1455 ◽  
Author(s):  
H.G. Jeong ◽  
W.J. Kim

The superplastic behavior of the Zr65Al10Ni10Cu15 glass metallic alloy produced by the powder metallurgy method was examined in the supercooled liquid region. A tensile elongation as large as 750% was obtained at 6.3 × 10−3 s−1 at 697 K. Large strain hardening took place during the course of deformation and systematic trend was observed in the hardening behavior. Plots of stress versus strain and strain rate versus stress at 697 K showed that Newtonian viscous flow governed the plastic flow until the onset of strain hardening. Microstructure and differential scanning calorimetry analyses as well as flow stress versus testing time curves provided consistent evidence that the strain hardening was induced by crystallization. Crystallization was enhanced in the gauge region (deformed region) as compared to the grip region (undeformed region). Crystallization is expected to decrease tensile ductility by decreasing the strain-rate-sensitivity value and increasing the degree of brittleness. Hardening by crystallization, however, can contribute to neck stability if crystallization is enhanced in the neck region. The strain hardening and plastic stability parameters were measured as a function of strain for different strain rates at 696 K. The strain hardening parameter remained highly positive until failure. Because of this, the neck stability parameter (I) could be I < 0 in the entire hardening region. The contribution of hardening by crystallization to neck stability was found to be much more significant than that by grain growth in the superplastic metallic alloys. Reducing the specimen heating-and-holding time was suggested to promote superplasticity deformation without delaying initiation of crystallization. The largest tensile strain in the hardening region where crystallization may be obtained at the strain rates and temperatures where crystallization rate is controlled to be the lowest while maintaining I ≤ 0 throughout deformation.


2002 ◽  
Vol 754 ◽  
Author(s):  
Q. Wang ◽  
J.J. Blandin ◽  
M. Suery ◽  
J.M. Pelletier

ABSTRACTThe high temperature deformation of the Zr41.2Ti12.5Cu13.8Ni10Be22.5 bulk metallic glass (BMG) is studied in the supercooled liquid region. Both fully amorphous and partially crystallized states are investigated. In the studied experimental domain, the amorphous alloy exhibits a Newtonian behavior at high temperature and/or low strain rate whereas a transition to non-Newtonian behavior is observed when the temperature is decreased and/or the strain rate is increased. In the Newtonian domain, the dependency of the viscosity upon temperature can be described by an Arrhénius law. As far as the as-received alloy is maintained at high temperature for which phase separation and primary crystallisation is expected, the flow stress continuously increases, which is at least partly attributed to a change in the residual amorphous phase.


Sign in / Sign up

Export Citation Format

Share Document