Room Temperature Deformation Behavior of Inconel718

2005 ◽  
Vol 475-479 ◽  
pp. 677-680 ◽  
Author(s):  
Fang Bian ◽  
Guoyue Su ◽  
Fan Ya Kong ◽  
Ke Yang

The deformation behavior of Inconel718 at room temperature was studied by tensile tests. Three kinds of specimens were tested, including cold rolled, heat treated with grain size ASTM5 and heat treated with grain size ASTM7. The true stress-strain curves were obtained based on the tensile test records. The true stress-strain relation can express the room temperature deformation behavior, which can be described by equations similar to the Voce equation. The limit value of the work-hardening rate θ0 is very sensitive to the microstructure of the alloy.

1987 ◽  
Vol 108 ◽  
Author(s):  
Ravichandran Subrahmanyan ◽  
Donald Stone ◽  
Che-Yu Li

ABSTRACTRoom temperature deformation data of leadless solder joints are reported. The joints were sheared under cyclic, displacement controlled loading at frequencies between 0.001 and 0.01 Hz. A microplastic model was utilized to simulate the stress-strain loops, which demonstrated a pronounced Bauschinger effect. The implications of microplasticity on fatigue life of solder joints are discussed. This phenomenon must be taken into account in an accurate prediction of solder deformation at low strain ranges.


2004 ◽  
Vol 449-452 ◽  
pp. 57-60
Author(s):  
I.G. Lee ◽  
A.K. Ghosh

In order to analyze high temperature deformation behavior of NiAl alloys, deformation maps were constructed for stoichiometric NiAl materials with grain sizes of 4 and 200 µm. Relevant constitute equations and calculation method will be described in this paper. These maps are particularly useful in identifying the location of testing domains, such as creep and tensile tests, in relation to the stress-temperature-strain rate domains experienced by NiAl.


2006 ◽  
Vol 114 ◽  
pp. 171-176 ◽  
Author(s):  
Joanna Zdunek ◽  
Pawel Widlicki ◽  
Halina Garbacz ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

In this work, Al-Mg-Mn-Si alloy (5483) in the as-received and severe plastically deformed states was used. Plastic deformation was carried out by hydrostatic extrusion, and three different true strain values were applied 1.4, 2.8 and 3.8. All specimens were subjected to tensile tests and microhardness measurements. The investigated material revealed an instability during plastic deformation in the form of serration on the stress-strain curves, the so called Portevin-Le Chatelier effect It was shown that grain size reduction effected the character of the instability.


DYNA ◽  
2016 ◽  
Vol 83 (195) ◽  
pp. 77-83 ◽  
Author(s):  
María José Quintana Hernández ◽  
José Ovidio García ◽  
Roberto González Ojeda ◽  
José Ignacio Verdeja

The use of Cu and Ti in Zn alloys improves mechanical properties as solid solution and dispersoid particles (grain refiners) may harden the material and reduce creep deformation. This is one of the main design problems for parts made with Zn alloys, even at room temperature. In this work the mechanical behavior of a Zn-Cu-Ti low alloy is presented using tensile tests at different strain rates, as well as creep tests at different loads to obtain the value of the strain rate coefficient m in samples parallel and perpendicular to the rolling direction of the Zn strip. The microstructure of the alloy in its raw state, as well as heat treated at 250°C, is also analyzed, as the banded structure produced by rolling influences the strengthening mechanisms that can be achieved through the treatment parameters.


2004 ◽  
pp. 1-12

Abstract Tensile tests are performed for several reasons. The results of tensile tests are used in selecting materials for engineering applications. Tensile properties often are used to predict the behavior of a material under forms of loading other than uniaxial tension. Elastic properties also may be of interest, but special techniques must be used to measure these properties during tensile testing, and more accurate measurements can be made by ultrasonic techniques. This chapter provides a brief overview of some of the more important topics associated with tensile testing. These include tensile specimens and test machines; stress-strain curves, including discussions of elastic versus plastic deformation, yield points, and ductility; true stress and strain; and test methodology and data analysis.


2007 ◽  
Vol 560 ◽  
pp. 29-34 ◽  
Author(s):  
Emmanuel Gutiérrez C. ◽  
Armando Salinas-Rodríguez ◽  
Enrique Nava-Vázquez

The effects of heating rate and annealing temperature on the microstructure and mechanical properties of cold rolled Al-Si, low C non-oriented electrical steels are investigated using SEM metallography and uniaxial tensile tests. The experimental results show that short term annealing at temperatures up to 850 °C result in microstructures consisting of recrystallized ferrite grains with sizes similar to those observed in industrial semi-processed strips subjected to long term batch annealing treatments. Within the temperature range investigated, the grain size increases and the 0.2% offset yield strength decreases with increasing temperature. It was observed that the rate of change of grain size with increasing temperature increases when annealing is performed at temperatures greater than Ac1 (~870 °C). This effect is attributed to Fe3C dissolution and rapid C segregation to austenite for annealing temperatures within the ferrite+austenite phase field. This leads to faster ferrite growth and formation of pearlite when the steel is finally cooled to room temperature. The presence of pearlite at room temperature decreases the ductility of samples annealed at T > Ac1.


2007 ◽  
Vol 551-552 ◽  
pp. 539-544 ◽  
Author(s):  
S. Ding ◽  
Kai Feng Zhang ◽  
Guo Feng Wang

Nanocrystalline pure nickel (nc-Ni) was produced by pulse electrodeposition and its superplastic properties at and above room temperature were investigated. The electrodeposited nickel has a narrow grain size distribution with a mean grain size of 70nm. Uniaxial tensile tests at room temperature showed that nc-Ni has a limited plasticity but high tensile strength up to 1GPa at strain rates between 10-5 and 10-2s-1. However, when the temperature increased to 420 and higher, test specimens showed uniform deformation and the elongation value was larger than 200%. A maximum elongation value of 380% was observed at 450°C and a strain rate of 1.67x10-3s-1, SEM and TEM were used to examine the microstructures of the as-deposited and deformed specimens. The results indicated that fracture was caused by intergranular cracking and most cracks were originated from the brittle oxide formed during the tensile test. Grain coarsening was observed in the deformed specimen. The role of temperature and strain on grain growth was evaluated by comparing the microstructure of deformed samples with that of samples statically annealed. Deformation mechanism was discussed based upon the deformed microstructure and strain rate jump tests.


2009 ◽  
Vol 24 (11) ◽  
pp. 3387-3396 ◽  
Author(s):  
Arcan F. Dericioglu ◽  
Y.F. Liu ◽  
Yutaka Kagawa

An all-oxide Al2O3-TiO2 ceramic multilayer composed of 10–100 nm thick alternating layers was fabricated using the reactive magnetron sputtering process. Microindentation tests were carried out on the multilayer ceramic followed by microstructural observations of the cross-sections of the indented sites to characterize the indentation response of the system. During the observations, it was noted that an extensive room temperature “deformation” occurred in the multilayer ceramic material. The material shows a thickness reduction of as much as ∼40% under a conical indenter at 300 mN of load without microcracking and dislocation-assisted deformation. The room temperature deformation mechanism is governed by the relative movement and rearrangement of the anisotropic nanoscale columnar grains along the intergranular boundaries containing elongated voids. The relative sliding along the intergranular boundaries, and the subsequent granular rotation under indentation were well captured by finite element simulation.


Sign in / Sign up

Export Citation Format

Share Document