Fine Nanophased ZnO:Ru and ZnO:Pt Powder Synthesis through Aerosols

2005 ◽  
Vol 494 ◽  
pp. 149-154 ◽  
Author(s):  
Lydia Mančić ◽  
S. Grgurić-Šipka ◽  
V.M. Djinović ◽  
Z. Marinković ◽  
T. Sabo ◽  
...  

Pt/Ru-doped ZnO nanophase particles were synthesized using ultrasonic spray pyrolysis. Particles were obtained through decomposition of zinc nitrate and newly developed Pt(IV) and Ru(III) complexes. The particle morphology, phase composition and chemical structure were revealed in accordance to various analysis methods (XRD, DSC, SEM/EDS, TEM) and discussed in terms of precursor chemistry and process parameters. The shape of DSC curves, indicating two exothermic effects above 6000C in both ZnO:Ru and ZnO:Pt, gave an indication of irreversible structural changes and high reactivity of as-prepared powders. The hexagonal wurtzite-type ZnO phase was revealed in both powdered samples. Small content of an intermediate Zn5(NO3)2(OH)8·2H2O and cubic Zn2PtO4 phase were detected in the Pt-doped ZnO particles. Structural refinements, performed by Koalariet-XFit, suggest the composite internal particle structure composed of primary particles sized less than 100 nm. The estimated values for the unit cell parameters and Zn-O bond lengths imply noble metal ions incorporation into ZnO matrix interstitially, probably in octahedral interstitial environment. It has been shown that different particle growing morphologies (either spheroidally or pyramidally shaped) were influenced by the precursor chemistry, processing parameters and the presence of noble metal ions. Among the many parameters, attaining of the particle shape uniformity and homogeneous distribution of the noble metal cations in as-prepared particles are regarded as the most important factors for dominating microstructure evolution.

2013 ◽  
Vol 28 (4) ◽  
pp. 254-261 ◽  
Author(s):  
Hasitha Ganegoda ◽  
James A. Kaduk ◽  
Carlo U. Segre

A series of iron-doped lead titanate PbTi(1−x)FexO(3−δ) samples in the x = 0–1 composition range was prepared using sol–gel synthesis at a calcination temperature of 700 °C. The room temperature CuKα powder diffraction data collected from x = 0, 0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, and 0.3 samples were analyzed using the Rietveld method. Magnetoplumbite (PbFe12O19) secondary phase formation was observed at compositions x = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. Fe-composition dependent decrease of tetragonal distortion has been observed. According to Vegard's law, the B-site iron solubility limit in the lead titanate host was found to be approximately 10 mol% (x = 0.1). Homogeneous distribution of dopants below the solubility limit was evidenced by the linear behavior of unit-cell parameters. The absence of a cubic phase and the persistence of distorted oxygen octahedra indicated the existence of ferroelectric properties even at the x = 0.3 composition. Beyond x = 0.3, the P4mm tetragonal model was determined to be invalid possibly because of oxygen defect driven structural changes, mainly tilting Fe-polyhedra.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 107 ◽  
Author(s):  
Ming Qin ◽  
Qing Chang ◽  
Yinkai Yu ◽  
Hongjing Wu

By the deposition of noble metal nanoparticles on a metal oxide substrate with a specific micro-/nanostructure, namely, yolk-shell structure, a remarkable improvement in photocatalytic performance can be achieved by the composites. Nevertheless, noble metal nanoparticles only distribute on the surface shell of metal oxide substrates when the conventional wet-chemistry reduction approach is employed. Herein, we proposed a novel acoustic levitation synthesis of Pt nanoparticles deposited on yolk-shell La2O3. The composites not only displayed well-defined, homogeneous distribution of Pt NPs on the exterior shell of La2O3 and the interior La2O3 core, but an enhanced chemical interaction between Pt and La2O3. The unique structure not only can display improved photocatalytic degradation rate toward methyl orange, but also may show great potential in fields of hydrogen generation, environmental protection, etc. The novel acoustic levitation synthesis can supplement the methodology of synthesizing well dispersed noble metal oxides over the whole yolk-shell structure through noble metal NPs deposition method.


Ionics ◽  
2019 ◽  
Vol 26 (3) ◽  
pp. 1515-1524
Author(s):  
Li Sun ◽  
Xixi Liu ◽  
Hua Zhang ◽  
Binlin Dou ◽  
Lixin Zhang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 66 (6) ◽  
pp. 909-915
Author(s):  
L. M. k. Alifkhanova ◽  
K. Ya. Lopunova ◽  
A. A. Marchuk ◽  
Yu. S. Petrova ◽  
A. V. Pestov ◽  
...  

2009 ◽  
Vol 103 (12) ◽  
pp. 1729-1738 ◽  
Author(s):  
Giovanna Navarra ◽  
Anna Tinti ◽  
Maurizio Leone ◽  
Valeria Militello ◽  
Armida Torreggiani

2005 ◽  
Vol 20 (1) ◽  
pp. 102-113 ◽  
Author(s):  
Vesna M. Djinovic ◽  
Lidija T. Mancic ◽  
Goran A. Bogdanovic ◽  
Predrag J. Vulic ◽  
Gilberto del Rosario ◽  
...  

Pure and Pt-doped ZnO nanophase particles were synthesized by ultrasonic spray pyrolysis. The particles were obtained through the decomposition of zinc nitrate and with a newly developed Pt(IV) complex with 1,3-propylenediamine-N,N′-diacetate tetradentate class ligand (pdda). The complex was characterized by elemental analysis, electronic absorption and infrared spectroscopy. The form of the determined complex structure {trans-[Pt(pdda)Br2]·H2O} implies that Pt(IV) ion has a distorted octahedral coordination due to intramolecular N–H···Br interaction. The results of structural refinement (cell parameters, bond lengths, and ion occupancy) of ultrasonically derived pure and Pt-doped ZnO particles suggest either the formation of Zni interstitials or platinum ion incorporation into the ZnO lattice in octahedral interstitial positions, respectively. A well-crystallized hexagonal wurtzite structure of ZnO was pronounced in all investigated samples [JCPDS card 36-1415, Joint Committee on Powder Diffraction Standards, defined by International Centre for Diffraction Data (www.icdd.com)]. Phase determination also indicated the presence of a nitrate hydroxide hydrate phase (JCPDS card 24-1460), as a result of incomplete precursor decomposition and a spinel Zn2PtO4 phase (below 1.0 wt%) located in the boundary region for a Pt-doped ZnO sample. Based on x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy analyses, it was shown that the different particle growingmorphologies, which were either spheroidally or pyramidally shaped, were influenced by the precursor chemistry, processing parameters and the presence of platinum ions. The composite internal particle structure revealed by transmission electron microscopy and selected area electron diffraction analyses, implied that the secondary particles represent an assembly of primary particles sized under 60 nm aroused during the processes of nucleation, growth and aggregation. Both hexagonal and spheroidal shape of primary particles was evident. The particle morphology, primarily particle size and the mechanism of Pt4+ ion introduction into the ZnO cell was discussed based on the structural refinement and selected area electron diffraction analysis.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
See Wee Chee ◽  
Juan Manuel Arce-Ramos ◽  
Wenqing Li ◽  
Alexander Genest ◽  
Utkur Mirsaidov

2005 ◽  
Vol 75 (8) ◽  
pp. 1208-1211 ◽  
Author(s):  
A. R. Garifzyanov ◽  
S. V. Zakharov ◽  
S. V. Kryukov ◽  
V. I. Galkin ◽  
R. A. Cherkasov

2019 ◽  
Vol 126 (12) ◽  
pp. 123903
Author(s):  
D. V. Azamat ◽  
A. G. Badalyan ◽  
P. G. Baranov ◽  
M. Fanciulli ◽  
J. Lanc̆ok ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document