Optimization of Component Placement Scheduling for SMT Assemblies

2006 ◽  
Vol 505-507 ◽  
pp. 1123-1128
Author(s):  
Chung Hsien Kuo ◽  
M.D. Jeng ◽  
J.J. Wing ◽  
Tai Hong Wang

The surface mounting of electronic component is the major manufacturing technology for the electronic products in the last decade. The surface mounting technology (SMT) is an assembly process that assembles the surface mountable component (SMC) and the printed circuit board (PCB) together. The SMT mounter is an automatic assembly machine that processes the SMT assemblies in terms of the optical positioning and robotic handling. The SMT assembly consists of calibrating printed circuit board (PCB); vacuuming components form feeder stations; compensating the orientation of the vacuumed surface mountable component (SMC); and finally placing SMC chips on the PCB. In order to increase the throughput, the synchronous batch vacuuming of SMC components is designed. In addition, different types of component feeding and mixing in each batch increase the difficulties of finding the best component mounting sequence. In this paper, the optimal component placement scheduler is desired to perform higher assembly performance and to reduce the cycle time. The proposed optimal component placement scheduler is developed based on the rule based heuristic search approach. In addition, to evaluate the cycle time of each heuristic search, the route oriented Petri nets (ROPN) based SMT assembly models are constructed. The optimal component placement scheduler can be further determined in terms of evaluating the ROPN SMT assembly models. Finally, the practical test PCB board data is discussed in this paper.

2013 ◽  
Vol 3 (2) ◽  
pp. 41
Author(s):  
Andrea Marisi ◽  
Revantino Revantino

Perkembangan teknologi di bidang Solid State Lighting selama dekade terakhir membuat diversifikasi penggunaan Light Emitting Diode untuk pelayanan pencahayaan umum. Balai Besar Bahan dan Barang Teknik sejak tahun 2011 telah melakukan penelitian dan pengembangan lampu LED berbasis Surface Mounting Device (SMD) 5050. Pada perancangan Printed Circuit Board (PCB) untuk memasangkan LED-smd tersebut, dilakukan analisis dimensi geometrik yang optimal sehingga dapat memancarkan cahaya ke segala arah dan memberikan persepsi kecerahan yang lebih baik. Untuk perancangan PCB tersebut, dipilih 2 (dua) model berbentuk silinder dengan memperhatikan rasio antara tinggi dan diameter alas. Dari pendekatan sumber titik dan perhitungan eksitansi luminus, diperoleh bahwa model dengan rasio ≈ 1 menghasilkan persepsi lebih cerah terhadap visual manusia.Kata kunci : dimensi geometrik, pendekatan sumber titik, eksitansi luminus, persepsi kecerahan


2012 ◽  
Vol 224 ◽  
pp. 47-50
Author(s):  
Xuan Du ◽  
Gang Yu

The component placement sequence and feeder arrangement are two critical factors determining the assembly time of chip-shooter machine (CS). In addition, the different size of component and different arrangement strategy affect the feeder arrangement and component placement sequence. Based on the engineering analysis, an integrated optimization model of printed circuit board (PCB) assembly for CS machine is established. According to the parallel placement character of CS machine, "Max-Min Ant Colony Algorithm with Communication function (MMAC)" is designed based on traditional Ant Colony Algorithm. The idea that two ants with different duties collaborate to solve the optimization problem is presented. Guide ants optimize placement sequence while executant ants optimize feeder arrangement according to the components placement sequence. The component placement sequence and feeder arrangement are optimized simultaneously


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1074
Author(s):  
Anton O. Belousov ◽  
Artem V. Medvedev ◽  
Evgeniya B. Chernikova ◽  
Talgat R. Gazizov ◽  
Alexander M. Zabolotsky

This work is devoted to the research of new asymmetry effects in symmetric protective structures with triple modal reservation. We analyzed the structures with different cross-sectional locations of the reference conductor: in the center (unshielded structure), around (shielded structure), at the top and bottom (multilayer printed circuit board), and in the form of side polygons (double-sided printed circuit board). First, a preliminary quasi-static simulation was performed in the range of parameters. It was revealed that in all structures, except for the shielded one (in the form of a cable), the deviations of the output voltage amplitude, bandwidth, and frequency of the first resonance were insignificant, whereas in the shielded structure there were significant deviations in the time and frequency responses. The attenuation of the output voltage in relation to the input for each structure was also estimated. In addition, we performed a parametric optimization of the structures under consideration using a heuristic search, which made it possible to improve their characteristics. Finally, the switching order between the conductors in these structures with the original and optimized parameter sets was investigated in detail. The optimal conductor switching order in the case of a component failure was determined, and the best (according to protective characteristics) parameter configuration for each structure was found.


Sign in / Sign up

Export Citation Format

Share Document