Coordinated Motion Control of Large-Scale Transporter for Conveying Heavy Frame Components in Ship-Manufacturing

2006 ◽  
Vol 505-507 ◽  
pp. 1159-1164
Author(s):  
Yun Hua Li ◽  
Li Man Yang ◽  
Gui Lin Yang

A large-scale elevating transporter that has multi-wheels to be steered independently is a very complex mechatronic system. Aiming at its real-time coordinated motion control, a multi-mode steering system based on Networked Control System (NCS) is proposed to tackle the problem in the paper. Through motion synthesis, such as kinematics and dynamics modeling and analysis, and using the inherent real-time data sharing of the NCS, a cross-coupled control algorithm for improving contour accuracy is developed. This control methodology is then applied to the coordinated motion control of a practical product with multi-steering modes successfully.

Author(s):  
Sepehr Fathizadan ◽  
Feng Ju ◽  
Kyle Rowe ◽  
Alex Fiechter ◽  
Nils Hofmann

Abstract Production efficiency and product quality need to be addressed simultaneously to ensure the reliability of large scale additive manufacturing. Specifically, print surface temperature plays a critical role in determining the quality characteristics of the product. Moreover, heat transfer via conduction as a result of spatial correlation between locations on the surface of large and complex geometries necessitates the employment of more robust methodologies to extract and monitor the data. In this paper, we propose a framework for real-time data extraction from thermal images as well as a novel method for controlling layer time during the printing process. A FLIR™ thermal camera captures and stores the stream of images from the print surface temperature while the Thermwood Large Scale Additive Manufacturing (LSAM™) machine is printing components. A set of digital image processing tasks were performed to extract the thermal data. Separate regression models based on real-time thermal imaging data are built on each location on the surface to predict the associated temperatures. Subsequently, a control method is proposed to find the best time for printing the next layer given the predictions. Finally, several scenarios based on the cooling dynamics of surface structure were defined and analyzed, and the results were compared to the current fixed layer time policy. It was concluded that the proposed method can significantly increase the efficiency by reducing the overall printing time while preserving the quality.


2014 ◽  
Vol 571-572 ◽  
pp. 497-501 ◽  
Author(s):  
Qi Lv ◽  
Wei Xie

Real-time log analysis on large scale data is important for applications. Specifically, real-time refers to UI latency within 100ms. Therefore, techniques which efficiently support real-time analysis over large log data sets are desired. MongoDB provides well query performance, aggregation frameworks, and distributed architecture which is suitable for real-time data query and massive log analysis. In this paper, a novel implementation approach for an event driven file log analyzer is presented, and performance comparison of query, scan and aggregation operations over MongoDB, HBase and MySQL is analyzed. Our experimental results show that HBase performs best balanced in all operations, while MongoDB provides less than 10ms query speed in some operations which is most suitable for real-time applications.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 649
Author(s):  
Yifeng Liu ◽  
Wei Zhang ◽  
Wenhao Du

Deep learning based on a large number of high-quality data plays an important role in many industries. However, deep learning is hard to directly embed in the real-time system, because the data accumulation of the system depends on real-time acquisitions. However, the analysis tasks of such systems need to be carried out in real time, which makes it impossible to complete the analysis tasks by accumulating data for a long time. In order to solve the problems of high-quality data accumulation, high timeliness of the data analysis, and difficulty in embedding deep-learning algorithms directly in real-time systems, this paper proposes a new progressive deep-learning framework and conducts experiments on image recognition. The experimental results show that the proposed framework is effective and performs well and can reach a conclusion similar to the deep-learning framework based on large-scale data.


Author(s):  
Jin-Woo Lee ◽  
Bakhtiar B. Litkouhi

The lateral motion control is a key element for automated driving vehicle technology. Typically, the front steering system has been used as the primary actuator for vehicle lateral motion control. Alternatively, this paper presents a new method of the lateral motion control using a rear steer. When combined with the front steer actuator, the rear steer can generate more dynamically responsive turning of the vehicle. In addition, the rear steer can be used as a secondary back up actuator when the front steer actuator fails to operate during automated driving mode. Similar to the prior research that has used the front steer actuator for the lateral control, the control methodology presented in this paper maintains the same hierarchical framework, i.e., sensor fusion, path prediction, path planning, and motion control. Since the rear steer is in play for the vehicle lateral motion control, the equations for the path prediction and vehicle dynamics are re-derived with non-zero front steer and rear steer angles. Combined with the rear steering dynamics, the model predictive control (MPC) technique is applied for motion error minimization. This paper describes the theoretical part of the algorithm, and provides simulation results to show effectiveness of the algorithm. Future work will include vehicle implementation, testing, and evaluation.


2014 ◽  
Vol 635-637 ◽  
pp. 1128-1131
Author(s):  
Xing Hong Kuang ◽  
Zhe Yi Yao ◽  
Shi Ming Wang

With the development of economy, the global satellite navigation system with its high speed, high efficiency, high precision measurement and positioning a series of significant advantages, favored by various industry data collection and monitoring of personnel resources , the advent of satellite navigation systems to solve a large-scale, rapid and high-precision global positioning problem. Its scope of application has penetrated to the various departments of the national economic and social development in various fields and industries. To be able to monitor the progressive realization of automated data collection and transmission, the urgent need to adopt advanced positioning technology to build real-time location monitoring system PC Based Development Background navigation receiver , an overview of the inter Beidou BD-126 systems and microcontrollers can be serially the basic principle of mouth communication describes the communication protocol Compass BD-126 positioning module and the next crew between the microcontroller to control development in the use of PC positioning system for a detailed description , including the BDS Beidou satellite navigation module and microcontroller serial data communications, microprocessor controlled real-time data display , and so on


Sign in / Sign up

Export Citation Format

Share Document