Precision-Limit Positioning of a Linear Motor Nano Drive System

2006 ◽  
Vol 505-507 ◽  
pp. 1243-1248
Author(s):  
Chen Hsieh ◽  
Ji-Lung Lin ◽  
Jen Chiou Huang ◽  
Chih Hong Chen

Ultra high precision positioning is an important issue in modern manufacturing industries. As it comes to positioning it is widely believed that friction is detrimental to high precision. As a result, people usually use special mechanical systems such as air-bearing guides and/or hybrid drives in a high precision positioning system to avoid the influence of friction. These strategies, however, increase the operational cost and system complexity. In this paper, it describes how to apply the Precision-Limit Positioning (PLP) technique introduced in [1] to a standard linear motor system with the existence of friction. The position resolution is designed to equal to the resolution of the position sensor used in the feedback loop, which is 2nm/count. It is further requested that the repeatability and steady state vibration of the system are stable enough so that the table is capable of doing count-by-count operation.

2011 ◽  
Vol 131 (3) ◽  
pp. 275-282
Author(s):  
Kenta Seki ◽  
Hiroaki Matsuura ◽  
Makoto Iwasaki ◽  
Hiromu Hirai ◽  
Soichi Tohyama

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1830
Author(s):  
Yiheng Zhou ◽  
Baoquan Kou ◽  
He Zhang ◽  
Lu Zhang ◽  
Likun Wang

The multi-degree-of-freedom high-precision positioning system (MHPS) is one of the key technologies in many advanced industrial applications. In this paper, a novel hyperbolic magnetic field voice coil actuator using a rhombus magnet array (HMF-VCA) for MHPS is proposed. Benefiting from the especially designed rhombus magnet array, the proposed HMF-VCA has the advantage of excellent force uniformity, which makes it suitable for multi-degree-of-freedom high-precision positioning applications. First, the basic structure and operation principles of the HMF-VCA are presented. Second, the six-degree-of-freedom force and torque characteristic of the HMF-VCA is studied by three-dimensional finite element analysis (3-D FEA). Third, the influence of structural parameters on force density and force uniformity is investigated, which is conducive to the design and optimization of the HMF-VCA. Finally, a prototype is constructed, and the comparison between the HMF-VCA and conventional VCAs proves the advantage of the proposed topology.


2019 ◽  
Vol 19 (19) ◽  
pp. 8626-8634 ◽  
Author(s):  
Hongji Pu ◽  
Hewen Wang ◽  
Xiaokang Liu ◽  
Zhicheng Yu ◽  
Kai Peng

MAPAN ◽  
2014 ◽  
Vol 30 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Rajat Sen ◽  
Chinmoy Pati ◽  
Samik Dutta ◽  
Ranjan Sen

Sign in / Sign up

Export Citation Format

Share Document