Development of a Smart Computer Numerical Control System

Author(s):  
Zhiqian Sang ◽  
Xun Xu

Traditional Computer Numerical Control (CNC) machines use ISO6983 (G/M code) for part programming. G/M code has a number of drawbacks and one of them is lack of interoperability. The Standard for the Exchange of Product for NC (STEP-NC) as a potential replacement for G/M code aims to provide a unified and interoperable data model for CNC. In a modern CNC machine tool, more and more motors, actuators and sensors are implemented and connected to the NC system, which leads to large quantity of data being transmitted. The real-time Ethernet field-bus is faster and more deterministic and can fulfill the requirement of data transmission in the high-speed and high-precision machining scenarios. It can provide more determinism on communication, openness, interoperability and reliability than a traditional field-bus. With a traditional CNC system using G/M code, when the machining is interrupted by incidents, restarting the machining process is time-consuming and highly experience-dependent. The proposed CNC controller can generate just-in-time tool paths for feature-based machining from a STEP-NC file. When machining stoppage occurs, the system can recover from stoppage incidents with minimum human intervention. This is done by generating new tool paths for the remaining machining process with or without the availability of the original cutting tool. The system uses a real-time Ethernet field-bus as the connection between the controller and the motors.

2011 ◽  
Vol 105-107 ◽  
pp. 2217-2220
Author(s):  
Mu Lan Wang ◽  
Jian Min Zuo ◽  
Kun Liu ◽  
Xing Hua Zhu

In order to meet the development demands for high-speed and high-precision of Computer Numerical Control (CNC) machine tools, the equipped CNC systems begin to employ the technical route of software hardening. Making full use of the advanced performance of Large Scale Integrated Circuits (LSIC), this paper puts forward using Field Programmable Gates Array (FPGA) for the functional modules of CNC system, which is called Intelligent Software Hardening Chip (ISHC). The CNC system architecture with high performance is constructed based on the open system thought and ISHCs. The corresponding programs can be designed with Very high speed integrate circuit Hardware Description Language (VHDL) and downloaded into the FPGA. These hardening modules, including the arithmetic module, contour interpolation module, position control module and so on, demonstrate that the proposed schemes are reasonable and feasibility.


Safety ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 14 ◽  
Author(s):  
Sever-Gabriel Racz ◽  
Radu-Eugen Breaz ◽  
Lucian-Ionel Cioca

Computer numerical control (CNC) machine tools are complex production systems with fully automatic machine parts. Nowadays, high feed rates and machining speeds are used during the machining process. Human operators are still needed to set-up the machine, load/unload workpieces and parts, load the machining code, and supervise the machining process. The operators work in an environment where automated high-speed motions occur, and consequently, CNC machine tools have to be equipped with safety systems. The approach presented in this paper was to evaluate the main safety systems of CNC machine tools based upon the analytic hierarchy process (AHP). The analyzed systems were divided into six main categories and compared pairwise using five criteria proposed by the authors. The approach and the obtained results significantly relied upon the situation found at the industrial company used as a benchmark for the research. The analysis reveals that, among considered safety devices, manually operated controls are the most efficient ones. Finally, a sensitivity analysis was conducted to test the stability of the AHP solution.


Author(s):  
De-Ning Song ◽  
Jian-Wei Ma ◽  
Zhen-Yuan Jia ◽  
Feng-Ze Qin ◽  
Xiao-Xuan Zhao

The tracking and contouring errors are inevitable in real computer numerical control contour following because of the reasons such as servo delay and dynamics mismatch. In order to improve the motion accuracy, this paper proposes a synergistic real-time compensation method of tracking and contouring errors for precise parametric curve following of the computer numerical control systems. The tracking error for each individual axis is first compensated, by using the feed-drive models with the consideration of model uncertainties, to enhance the tracking performances of all axes. Further, the contouring error is estimated and compensated to improve the contour accuracy directly, where a high-precision contouring-error estimation algorithm, based on spatial circular approximation of the desired contour neighboring the actual motion position, is presented. Considering that the system structure is coupled after compensation, the stability of the coupled system is analyzed for design of the synergistic compensator. Innovative contributions of this study are that not only the contouring-error can be estimated with a high precision in real time, but also the tracking and contouring performances can be simultaneously improved although there exist modeling errors and disturbances. Simulation and experimental tests demonstrate the effectiveness and advantages of the proposed method.


2013 ◽  
Vol 554-557 ◽  
pp. 706-713 ◽  
Author(s):  
Fabien Poulhaon ◽  
Matthieu Rauch ◽  
Adrien Leygue ◽  
Jean Yves Hascoet ◽  
Francisco Chinesta

Real-time control of manufacturing processes is a challenging issue for nowadays industry. The need for ever more efficient production requires new strategies in order to make correct decisions in an acceptable time. In a large number of cases, operators working on a CNC machine tool have a reduced number of possibilities for interacting in real-time with the machine. Numerical simulation based control is in that sense an appealing alternative to the conventional approach since it provides the operator with an additional source of information, confirming his choices or in reverse suggesting a more adapted strategy. The main goal of this work is to propose a method to move from a bilateral approach (operator and CNC controller) to a trilateral one where the simulation is an active component of the manufacturing process. This paper focuses on a simple issue sometimes encountered in milling processes: how to remove a constant thickness of material at the surface of a part whose exact geometry is unknown? The difficulty lies in the choice of an appropriate trajectory for the tool. So far the method which is employed consists in acquiring the geometry of the part thanks to a palpation step made prior to milling. However, this step has to be repeated for each part and can become rather fastidious as the size of the part increases. The approach presented here gets rid of the palpation step and makes use of online measurements for identifying the real geometry and correcting the trajectory of the tool in accordance. By monitoring the forces applying on the tool (directly on the NC), we have access to the milling depth and therefore to the geometry of the part at several locations along the trajectory of the tool. This information is used as an input data for our numerical model running on an external device, which finally derives an approximation for the geometry. An optimized trajectory is then obtained and is updated on the machine. This procedure is repeated as the tool moves forward and it allows for a fast and robust on-line correction of the toolpath.


2015 ◽  
Vol 809-810 ◽  
pp. 1504-1509 ◽  
Author(s):  
Ana Lacramioara Ungureanu ◽  
Gheorghe Stan ◽  
Paul Alin Butunoi

In this paper are proposed two new approaches to maintenance strategies for Computer Numerical Control (CNC) machine tools. The analysis is done for different families of CNC machine tools from S.C. Elmet Bacau, a company specialized in aviation. In maintenance actions applied to CNC machine tools is very important to know the evolution of defects and critical state of electrical and mechanical components. The results of this analysis concludes that maintenance actions can be judged by the developing time period diagram, between failure appearance and interruptions in operation. It is also analyzed the financial impact, revealed from known maintenance strategies adopted on CNC machine tools, resulting in a positive approach of condition based maintenance.


2020 ◽  
Vol 10 (9) ◽  
pp. 3257
Author(s):  
Hoang Vu ◽  
Ngoc Minh Kieu ◽  
Do Thi Gam ◽  
Seoyong Shin ◽  
Tran Quoc Tien ◽  
...  

Redistribution of LED radiation in lighting is necessary in many applications. In this article, we propose a new optical component design for LED lighting to achieve a higher performance. The design consists of a commercial collimator and two linear Fresnel lenses. The LED radiation is collimated by a collimator and redistributed by double linear Fresnel lenses to create a square-shaped, uniform distribution. The linear Fresnel lenses design is based on Snell’s law and the “edge-ray principle”. The optical devices are made from poly methyl methacrylate (PMMA) using a high-speed computer numerical control (CNC) machine. The LED prototypes with complementary optics were measured, and the optical intensity distribution was evaluated. The numerical results showed we obtained a free-form lens that produced an illumination uniformity of 78% with an efficiency of 77%. We used the developed LED light sources for field experiments in agricultural lighting. The figures of these tests showed positive effects with control flowering criteria and advantages of harvested products in comparison with the conventional LED sources. This allows our approach in this paper to be considered as an alternative candidate for highly efficient and energy-saving LED lighting applications.


Author(s):  
Hao Tong ◽  
Jing Cui ◽  
Yong Li ◽  
Yang Wang

In 3D scanning micro electro discharge machining (EDM), the CAD/CAM systems being used in mechanical milling of numerical control (NC) are unable to be applied directly due to the particularity of tool electrode wear. Based on industry computer and RT-Linux software platform, a CAD/CAM integration system of 3D micro EDM is developed. In the developed CAD/CAM integration system, the hardware includes mainly a micro feed mechanism for servo control, XY worktable, a high frequency pulse power supply, monitoring circuits etc., and the functions consist of model design, scanning path planning and simulation, NC code generation and post processing, real-time compensating of tool electrode wear, and machining control of states and process. The method of double buffer storage is adopted to transmit numbers of NC machining data. Servo scanning EDM method is used to realize real-time electrode wear compensating and thereby 3D micro structures are machined automatically. The machining experiments are made about model design, parameters optimizing, and process control. The typical 3D micro structures with space curved surfaces and lines have been machined such as micro prism, micro half tube, camber correlation line, and so on. The machining process and results show that the CAD/CAM integration system has the characters of higher real-time, reliability, and general using.


Author(s):  
Lixian Zhang ◽  
Xiao-shan Gao ◽  
Hongbo Li

In this paper, a multi-period turning interpolation algorithm, with real-time look-ahead scheme based on S-curve control method, is presented. In this interpolation algorithm, the geometric precision and the dynamic performance are both satisfied. The machining efficiency is improved by multi-period turning transition, and the precision is also improved by S-curve control method. The computational efficiency of this algorithm meets the need of real-time machining. In addition, there is no accumulated error. At last, this algorithm is verified the validation by the experiments on 3-axis CNC machine.


Sign in / Sign up

Export Citation Format

Share Document