Mechanical Behavior of TiB2 Nanoparticles Reinforced Cu Matrix Composites Synthesized by In-Situ Processing

2006 ◽  
Vol 510-511 ◽  
pp. 346-349 ◽  
Author(s):  
Dae Hwan Kwon ◽  
Khoa Xuan Huynh ◽  
Thuy Dang Nguyen ◽  
Pyuck Pa Choi ◽  
Myung-Gyu Chang ◽  
...  

Cu-TiB2 nanocomposite powders were in situ synthesized by combining high-energy ball milling of Cu-Ti-B elemental powder mixtures as precursors and subsequent self-propagating high temperature synthesis (SHS). Cu-40wt.% TiB2 was produced after SHS reaction and then diluted by copper to obtain desired homogeneous composites with 2.5, 5 and 10wt.%TiB2. Spark plasma sintering (SPS) was used to inhibit grain growth and thereby obtain fully Cu-TiB2 sintered bodies with nanocomposite structure. After SHS reaction, only Cu and TiB2 phases were detected in the SHS-product. Spheroidal TiB2 particles smaller than 250nm were formed in the copper matrix after SHS-reaction. Mechanical and electrical properties were investigated after SPS at 650°C for 30min under 50MPa. The electrical conductivity decreased from 75 to 54% IACS with increasing of TiB2 contents from 2.5 to 10wt.%. However, hardness increased from 56 to 97HRB. In addition, the tensile strength increased with increasing the TiB2 content.

2007 ◽  
Vol 534-536 ◽  
pp. 1517-1520
Author(s):  
Dae Hwan Kwon ◽  
Thuy Dang Nguyen ◽  
Dina V. Dudina ◽  
Jong Won Kum ◽  
Pyuck Pa Choi ◽  
...  

In the present work, Cu-TiB2 nanocomposite powders were synthesized by combining high-energy ball-milling of Cu-Ti-B mixtures and subsequent self-propagating high temperature synthesis (SHS). Cu-40wt.%TiB2 powders were produced by SHS reaction and ball-milled. The milled SHS powder was mixed with Cu powders by ball milling to produce Cu-2.5wt.%TiB2 composites. TiB2 particles less than 250nm were formed in the copper matrix after SHS-reaction. The releative density, electrical conductivity and hardness of specimens sintered at 650-750°C were nearly 98%, 83%IACS and 71HRB, respectively. After heat treatment at 850 to 950°C for 2 hours under Ar atmosphere, hardness was descedned by 15%. Our Cu-TiB2 composite showed good thermal stability at eleveated temperature.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2602 ◽  
Author(s):  
Massimo Pellizzari ◽  
Giulia Cipolloni

The aim of this study is to fabricate a Cu-0.5wt%TiB2 composite by mechanical alloying (MA) and spark plasma sintering (SPS). Increasing the milling time, the powders are subjected firstly to a severe flattening process and then to intense welding, which promotes the refinement of TiB2 particles, their uniform dispersion in the metal matrix, and the adhesion between the two constituents. Sintered metal matrix composites (MMC) exhibit density values between 99 and 96%, which are generally decreased by increasing milling time in view of the stronger strain hardening. On the other side, the hardness increases with milling time due to the refinement of TiB2 particles and their improved distribution. The hardness of MMC is three times higher (225 HV0.05) than the starting hardness of atomized copper (90 HV0.05). Tensile tests show a loss of ductility, but ultimate tensile strength has been increased from 276 MPa of atomized copper to 489 MPa of MMC milled for 240 min. The thermal conductivity of MMC is comparable to that of atomized copper (300 W/mK), i.e., much higher than that of the commercial Cu-Be alloy (Uddeholm Moldmax HH, 106 W/mK) typically used for tooling applications.


2007 ◽  
Vol 119 ◽  
pp. 63-66 ◽  
Author(s):  
Dae Hwan Kwon ◽  
Thuy Dang Nguyen ◽  
Dina V. Dudina ◽  
Ji Soon Kim ◽  
Young Jin Yum ◽  
...  

Preparation of titanium diboride reinforced copper matrix composites with high conductivity and mechanical strength was developed based on in situ produced powders. The effect of the titanium diboride content on the mechanical properties of the bulk material produced from the powders by Spark Plasma Sintering technique was studied. Increasing titanium diboride content from 2.5 up to 7.5 wt.% resulted in a 1.5-fold increase in yield strength, tensile strength and hardness and 5-fold increase in wear resistance with only 10% decrease in conductivity.


2006 ◽  
Vol 118 ◽  
pp. 661-665 ◽  
Author(s):  
Dae Hwan Kwon ◽  
Thuy Dang Nguyen ◽  
Pyuck Pa Choi ◽  
Ji Soon Kim ◽  
Young Soon Kwon

The microstructure and properties of Cu-TiB2 composites produced by high-energy ball-milling of TiB2 powders and spark-plasma sintering (SPS) were investigated. TiB2 powders were mechanically milled at a rotation speed of 1000rpm for short time in Ar atmosphere, using a planetary ball mill. To produce Cu-xTiB2 composites( x = 2.5, 5, 7.5 and 10wt.% ), the raw and milled TiB2 powders were mixed with Cu powders by means of a turbular mixer, respectively. Sintering of mixed powders was carried out in a SPS facility under vacuum. High-energy ball-milling resulted in refinement of TiB2 particles. XRD patterns of milled TiB2 powders indicated broader TiB2 peaks with decreased intensities. After sintering at 950 for 5min using the raw and milled TiB2 mixture powders, the sintered density decreased with increasing TiB2 content regardless of milling of TiB2. In the case of raw TiB2, hardness rapidly increased from 4 to 44 HRB with increasing TiB2 content. The electrical conductivity changed from 95.5 to 80.7 %IACS. For mixtures of Cu powders with milled TiB2 powders, hardness increased from 38 to 67 HRB as TiB2 content increased, while the electrical conductivity varied from 88% to 51 % IACS. When compared to compacts sintered with raw and milled TiB2 powders, the electrical conductivity of specimens with raw TiB2 powder was higher than that of specimens with milled TiB2 powder, while hardness was slightly lower.


2013 ◽  
Vol 750 ◽  
pp. 92-95
Author(s):  
Zhong Chun Chen ◽  
Sri Nugroho ◽  
Akira Kawasaki

Al2O3 matrix composites reinforced with Ba-b-Al2O3 phase were synthesized through reactive sintering using Al2O3 and BaCO3 as starting powders. Dense Al2O3/Ba-b-Al2O3 composites can be obtained by spark plasma sintering from Al2O3/BaO•Al2O3 powder, which was prepared by calcining Al2O3/BaCO3 powder mixture. The Ba-b-Al2O3 reinforcing phase exhibited an elongated morphology due to preferred diffusion of Ba cations. The existence of Ba-b-Al2O3 phase as well as low sintering temperature and short holding time during reactive sintering inhibit grain growth and thus result in small grain sizes of the Al2O3 matrix.


Sign in / Sign up

Export Citation Format

Share Document