Influence of Surface Roughness on the Quality of Data Obtained by Pseudo-Grazing Incidence X-Ray Diffraction

2006 ◽  
Vol 514-516 ◽  
pp. 1618-1622 ◽  
Author(s):  
Maria José Marques ◽  
J.C.P. Pina ◽  
A. Morão Dias

The conventional Bragg diffraction geometry, normally used to characterize the residual surface stress state, it is not suitable to evaluate surface treated materials and thin films. The X-ray path lengths through a surface layer or thin film are too short to produce adequate diffraction intensities in relation to the bulk or the substrate. Another limitation of the conventional technique appears when a residual stress gradient is present in the irradiated surface. The technique only enables the evaluation of the mean value of this gradient. In these cases, a recently proposed Pseudo-Grazing Incident X-ray Diffraction method would be better applicable. In this study, the Pseudo-Grazing Incidence X-ray Diffraction is applied to characterize the residual stress depth profiles of several AISI 4140 samples, which were prepared, by mechanical polishing and grinding, in order to present different surface roughness parameters, Ra. The experimental results lead to the conclusion that the surface roughness limits the application of the Pseudo-Grazing Incidence methodology to a minimum X-ray incident angle. This angle is the one that enables a mean X-ray penetration depth with the same order of magnitude of the sample surface roughness parameter, Ra.

2011 ◽  
Vol 681 ◽  
pp. 121-126 ◽  
Author(s):  
Andrey Benediktovich ◽  
Hugues Guerault ◽  
Ilya Feranchuk ◽  
V. Uglov ◽  
Alex Ulyanenkov

Roughness influence on the residual stress gradient evaluation in the case of a grazing incidence X-ray diffraction setup is considered. In this geometry the surface roughness changes essentially the X-ray wave fields of the transmitted and diffracted beams inside the coatings and subsurface regions of bulk samples, and thus influences the refractive properties of the investigated sample area. In turn, the change in the refraction index enforces the re-scale of the informational depth and, consequently, the evaluated stress depth profile. The diffracted amplitude from the crystalline grain located beneath the surface is calculated. The surface roughness is shown to contribute into reconstruction of the real stress gradient profile of the coating.


2001 ◽  
Vol 678 ◽  
Author(s):  
Yanan Xiao ◽  
Tim Graber ◽  
Myungae Lee ◽  
Dale E. Wittmer ◽  
Susan M. Mini

AbstractThe residual-stress-gradient distribution just below the surface of a material is an important factor to consider during the engineering and design of a component. With the availability of an intense energy-tunable synchrotron x-ray source, it becomes easier to analyze the stress gradient below the surface, using a multi-energy x-ray diffraction method. A program was developed to efficiently determine possible experimental parameters using a sample with a known stress gradient distribution. In addition, this program can also calculate the stress gradient distribution below the surface taking into account experimental results. It also includes a subroutine for calculating the x-ray absorption coefficients of all of the elements, generalizing it for use with any material. As an example, in the present study, the relationship between x-ray energy and the residual stress gradient is discussed according to the calculated result for a silicon nitride composition.


2008 ◽  
Vol 373-374 ◽  
pp. 754-757 ◽  
Author(s):  
Dong Ying Ju ◽  
B. Han

Water cavitation peening (WCP) with aeration is a novel surface enhancement method. A new ventilation nozzle with aeration is adopted to improve the process capability of WCP by increasing the impact pressure induced by the bubble collapse on the surface of components. In this study, in order to investigate the process capability of the WCP with aeration, a standard N-type almen strips of spring steel SAE 1070 was treated by WCP with various process conditions, and the arc height value and the residual stress in the superficial layers were measured by X-ray diffraction method. The optimal fluxes of aeration and the optimal standoff distances were achieved.


2021 ◽  
Vol 54 (5) ◽  
pp. 1530-1534
Author(s):  
Sergey Stepanov

X-ray Server (https://x-server.gmca.aps.anl.gov) is a collection of programs for online modelling of X-ray diffraction and scattering. The dynamical diffraction program is the second most popular Server program, contributing 34% of total Server usage. It models dynamical X-ray diffraction from strained crystals and multilayers for any Bragg-case geometry including grazing incidence and exit. This paper reports on a revision of equations used by the program, which yields ten times faster calculations in most use cases, on implementing calculations of X-ray standing waves and on adding new options for modelling diffraction from monolayers.


2020 ◽  
Vol 60 (4) ◽  
pp. 475-480
Author(s):  
V. A. N. Righetti ◽  
T. M. B. Campos ◽  
L. B. Robatto ◽  
R. R. Rego ◽  
G. P. Thim

2014 ◽  
Vol 996 ◽  
pp. 162-168 ◽  
Author(s):  
Andrei Benediktovitch ◽  
Tatjana Ulyanenkova ◽  
Jozef Keckes ◽  
Alex Ulyanenkov

X-ray residual stress analysis is a widespread nondestructive technique to investigate the residual stress and residual stress gradient in thin films and protective coatings.In the present contribution we introduce a new method based on the noncomplanar measurement geometry that allow to span large area of sin2ψ and penetration depth values without sample inclination. The refraction correction and absorption is considered in details for the noncomplanar measurements. The proposed technique is applied to determine stress gradients of blasted hard TiN coatings.


Sign in / Sign up

Export Citation Format

Share Document