Aspects of Residual Stress Determination Using Energy-Dispersive Synchrotron X-Ray Diffraction

2006 ◽  
Vol 524-525 ◽  
pp. 267-272 ◽  
Author(s):  
Axel Steuwer ◽  
Matthew J. Peel ◽  
Thomas Buslaps

In this paper we discuss certain aspects of residual stress measurements using energy-dispersive synchrotron X-ray diffraction using very high X-ray energies in the range up to 200keV. In particular, we focus on the strain resolution and its relation to the geometric contribution to the instrumental resolution. This energy range together with the brilliance of insertion devices allows measurements in bulk materials with penetration approaching those of neutrons, and the technique is demonstrated to have a high potential for residual stress determination. However, the use of high X-ray energies implies a relatively small diffraction angle and in turn a relatively elongated gauge volume, which favours the application of the technique to essentially 2D problems.

2003 ◽  
Vol 36 (5) ◽  
pp. 1123-1127 ◽  
Author(s):  
Yu-Hui Dong ◽  
Jing Liu ◽  
Yan-Chun Li ◽  
Xiao-Dong Li

A full-pattern fitting algorithm for energy-dispersive X-ray diffraction is proposed, especially for high-pressure X-ray diffraction studies. The algorithm takes into account the errors in measuring the energy and the diffraction angle. A lognormal function is introduced to represent the background. All the peaks that are detectable in the diffraction spectra, including fluorescence and diffraction peaks, are considered together. Because all the data points in the spectra are used, the accuracy of the cell parameters obtained by this method is very high. This is very helpful in the analysis of the equation of state and the identification of new phases under high pressure.


2017 ◽  
Vol 122 (19) ◽  
pp. 195105 ◽  
Author(s):  
Mathieu Guerain ◽  
Jean-Luc Grosseau-Poussard ◽  
Guillaume Geandier ◽  
Benoit Panicaud ◽  
Nobumichi Tamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document