Superplastic Forming and Diffusion Bonding for Four-Layer Sheets Structure of Nickel-Base Superalloy

2007 ◽  
Vol 551-552 ◽  
pp. 163-168
Author(s):  
Wen Bo Han ◽  
D.Z. Wu ◽  
Guo Feng Wang ◽  
M.J. Tong

The superplastic forming and diffusion bonding (SPF/DB) is applied in aviation and space flight field. The SPF/DB process with gas pressure control for dissimilar superalloy structure was studied. Diffusion bonding parameters, including bonding temperature T, pressure P, time t, affect the joining mechanism. When the bonded specimen with 50&m thick nickel foil interlayer was tensile at room temperature, shear fracture of the joints with nickel foil interlayer takes place at the GH4141 superalloy part. The SPF/DB of four-layer sheets structure was investigated. The optimum parameters for the SPF/DB process are: forming temperature T=1243K, forming pressure P=1MPa, forming time t=35min. The microstructure of the bonded samples was characterized. The microstructure shows an excellent bonding at the interfaces. The distribution of thickness after SPF/DB was investigated.

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 152
Author(s):  
Peng Peng ◽  
Shaosong Jiang ◽  
Zhonghuan Qin ◽  
Zhen Lu

This work fabricated a double hollow structural component of Mg-8.3Gd-2.9Y-0.8Zn-0.2Zr alloy by superplastic forming (SPF) and reaction-diffusion bonding (RDB). The superplastic characteristic and mechanical properties of Mg-8.3Gd-2.9Y-0.8Zn-0.2Zr alloy sheets at 250–450 °C were studied. Tensile tests showed that the maximum elongation of tensile specimens was about 1276.3% at 400 °C under a strain rate of 1 × 10−3 s−1. Besides, the effect of bonding temperature and interface roughness on microstructure and mechanical properties of the reaction diffusion-bonded joints with a Cu interlayer was investigated. With the increase of temperature, the diffusion coefficient of Cu increases, and the diffusion transition region becomes wider, leading to tightening bonding of the joint. However, the bonding quality of the joint will deteriorate due to grain size growth at higher temperatures. Shear tests showed that the highest strength of the joints was 152 MPa (joint efficiency = 98.7%), which was performed at 460 °C.


1994 ◽  
Vol 170-172 ◽  
pp. 737-742 ◽  
Author(s):  
Oscar A. Kaibyshev ◽  
Ramil Ya. Lutfullin ◽  
Rinat V. Safiullin ◽  
S.N. Fatkullin

1984 ◽  
Vol 21 (1) ◽  
pp. 61-64 ◽  
Author(s):  
W. T. Chandler ◽  
A. K. Ghosh ◽  
W. M. Mahoney

Author(s):  
I E Bottomley

The diffusion bonding (DB)/superplastic forming (SPF) manufacturing process, for titanium 6A1/4V material, has been developed within British Aerospace for the manufacture of military aircraft components. Diffusion bonding of titanium alloys offers the potential for parent metal joint strengths, and when combined with SPF, complex aircraft components offering significant cost and weight savings can be manufactured. This paper briefly describes the DB/SPF development programme and the manufacture of the Tornado heat exchanger ducts and European Fighter Aircraft (EFA) foreplane components.


2010 ◽  
Vol 433 ◽  
pp. 119-124 ◽  
Author(s):  
Paul Wilson ◽  
Christopher Couzins-Short ◽  
Howard Chesterton ◽  
Alan Jocelyn

Superplastic Forming and Diffusion Bonding (SPF/DB) have provided some of the lightest, strongest, corrosion resistant, elegant and complex structures ever produced. Thus “At Boeing, SPF is now considered as a baseline design option for many large assemblies” (Dan Sanders, 2000). However, in an ever increasingly cost conscience world, will the process flourish or decline? Cost is the element most scrutinised by society, and is often considered more important than achieving a required specification or delivery of a project on time. In this paper an analysis of the global value of SPF and SPF/DB products will be provided by industrial sector and material type. The cost of the current technology, such as capital plant, consumable materials and labour overheads, will be compared to the current price of SPF products and the degree of ‘market pressure’ to reduce such costs will be assessed. Such pressures may arise from potential threats from competing technologies, fuel costs or environmental considerations. However, if lowering the ‘carbon footprint’ of the process, and its cost, could be achieved, together with the production of components and structures of improved weight to strength ratio, SPF technology could be elevated to the first, and principal, choice of designers worldwide.


Sign in / Sign up

Export Citation Format

Share Document