Superplastic Forming and Diffusion Bonding for Four-Layer Sheets Structure of Nickel-Base Superalloy

Author(s):  
Wen Bo Han ◽  
D.Z. Wu ◽  
Guo Feng Wang ◽  
M.J. Tong
Author(s):  
Yejun Gu ◽  
Jean Charles Stinville ◽  
Patrick G. Callahan ◽  
McLean P. Echlin ◽  
Tresa M. Pollock ◽  
...  

2007 ◽  
Vol 551-552 ◽  
pp. 163-168
Author(s):  
Wen Bo Han ◽  
D.Z. Wu ◽  
Guo Feng Wang ◽  
M.J. Tong

The superplastic forming and diffusion bonding (SPF/DB) is applied in aviation and space flight field. The SPF/DB process with gas pressure control for dissimilar superalloy structure was studied. Diffusion bonding parameters, including bonding temperature T, pressure P, time t, affect the joining mechanism. When the bonded specimen with 50&m thick nickel foil interlayer was tensile at room temperature, shear fracture of the joints with nickel foil interlayer takes place at the GH4141 superalloy part. The SPF/DB of four-layer sheets structure was investigated. The optimum parameters for the SPF/DB process are: forming temperature T=1243K, forming pressure P=1MPa, forming time t=35min. The microstructure of the bonded samples was characterized. The microstructure shows an excellent bonding at the interfaces. The distribution of thickness after SPF/DB was investigated.


2011 ◽  
Vol 21 (11) ◽  
pp. 2402-2407 ◽  
Author(s):  
Xiao-lin PAN ◽  
Hai-yan YU ◽  
Gan-feng TU ◽  
Wen-ru SUN ◽  
Zhuang-qi HU

Author(s):  
J. E. Doherty ◽  
A. F. Giamei ◽  
B. H. Kear ◽  
C. W. Steinke

Recently we have been investigating a class of nickel-base superalloys which possess substantial room temperature ductility. This improvement in ductility is directly related to improvements in grain boundary strength due to increased boundary cohesion through control of detrimental impurities and improved boundary shear strength by controlled grain boundary micros true tures.For these investigations an experimental nickel-base superalloy was doped with different levels of sulphur impurity. The micros tructure after a heat treatment of 1360°C for 2 hr, 1200°C for 16 hr consists of coherent precipitates of γ’ Ni3(Al,X) in a nickel solid solution matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Sign in / Sign up

Export Citation Format

Share Document