Time-Dependent Dielectric Breakdown of Thermal Oxides on 4H-SiC

2007 ◽  
Vol 556-557 ◽  
pp. 675-678 ◽  
Author(s):  
Kevin Matocha ◽  
Richard Beaupre

Thermal oxides on 4H-SiC are characterized using time-dependent dielectric breakdown techniques at electric fields between 6 and 10 MV/cm. At 250°C, oxides thermally-grown using N2O with NO annealing achieve a mean time to failure (MTTF) of 2300 hours at 6 MV/cm. Oxides grown in steam with NO annealing show approximately four times longer MTTF than N2O-grown oxides. At electric fields greater than 8 MV/cm, Fowler-Nordheim tunneling significantly reduces the expected failure times. For this reason, extrapolation of mean-time to failure at low fields must be performed by datapoints measured at lower electric fields.

2008 ◽  
Vol 600-603 ◽  
pp. 1131-1134 ◽  
Author(s):  
Kevin Matocha ◽  
Zachary Stum ◽  
Steve Arthur ◽  
Greg Dunne ◽  
Ljubisa Stevanovic

SiC vertical MOSFETs were fabricated and characterized to achieve a blocking voltage of 950 Volts and a specific on-resistance of 8.4 mW-cm2. Extrapolations of time-dependent dielectric breakdown measurements versus applied electric field indicate that the gate oxide mean-time to failure is approximately 105 hours at 250°C.


1995 ◽  
Vol 386 ◽  
Author(s):  
J. S. Suehle ◽  
P. Chaparala

ABSTRACTTime-Dependent Dielectric Breakdown studies were performed on 6.5-, 9-, 15-, 20-, and 22.5- nm thick SiO2 films over a wide range of stress temperatures and electric fields. Very high temperatures (400 °C) were used to accelerate breakdown so that stress tests could be performed at low electric fields close to those used for device operating conditions. The results indicate that the dependence of TDDB on electric field and temperature is different from that reported in earlier studies. Specifically, the electric-field-acceleration parameter is independent of temperature and the thermal activation energy was determined to be between 0.7 and 0.9 eV for stress fields below 7.0 MV/cm.Failure distributions of high-quality current-generation oxide films are shown to be of single mode and have dispersions that are not sensitive to stress electric field or temperature, unlike distributions observed for oxides examined in earlier studies. These results have implications on the choice of the correct physical model to describe TDDB in thin films. The data also demonstrate for the first time the reliability of silicon dioxide films at very high temperatures.


1995 ◽  
Vol 391 ◽  
Author(s):  
J. S. Suehle ◽  
P. Chaparala

AbstractTime-Dependent Dielectric Breakdown studies were performed on 6.5-, 9-, 15-, 20-, and 22.5-nm thick SiO2 films over a wide range of stress temperatures and electric fields. Very high temperatures (400 °C) were used to accelerate breakdown so that stress tests could be performed at low electric fields close to those used for device operating conditions. The results indicate that the dependence of TDDB on electric field and temperature is different from that reported in earlier studies. Specifically, the electric-field-acceleration parameter is independent of temperature and the thermal activation energy was determined to be between 0.7 and 0.9 eV for stress fields below 7.0 MV/cm.Failure distributions of high-quality current-generation oxide films are shown to be of single mode and have dispersions that are not sensitive to stress electric field or temperature, unlike distributions observed for oxides examined in earlier studies. These results have implications on the choice of the correct physical model to describe TDDB in thin films. The data also demonstrate for the first time the reliability of silicon dioxide films at very high temperatures.


2006 ◽  
Vol 914 ◽  
Author(s):  
Sang-Soo Hwang ◽  
Sung-Yup Jung ◽  
Young-Chang Joo

AbstractFor the study of dielectric failures by Cu migration, TDDB (time dependent dielectric breakdown) and 1-D FDM simulation was carried out. We tested TDDB using a simple MIS structure with no barrier Cu electrode. From our TDDB results, the TTF's in the acceleration condition and the characteristic parameter of TDDB were obtained. In the simulation parts, 1-D FDM simulation was accomplished considering space charge effect due to Cu ions.The objective of TDDB is to predict of TTF (time to failure) in the service condition form the results of an accelerating condition. The characteristic of TTF's follows E model in the accelerating condition, in the service condition, the deviation from E model was observed. This different characteristic of TTF can be explained by the mechanism of Cu migration enhanced by an applied E field. Our simulation and TDDB results reveal that the deviation from E model does not mean the change of failure mechanism, but it shows the characteristics of Cu migration.


Sign in / Sign up

Export Citation Format

Share Document