Microscopic Thickness Uniformity and Time-Dependent Dielectric Breakdown Lifetime Dispersion of Thermally Grown Ultrathin SiO2Film on Atomically Flat Si Surface

2013 ◽  
Vol 52 (3R) ◽  
pp. 031301 ◽  
Author(s):  
Ryu Hasunuma ◽  
Yusuke Hayashi ◽  
Masahiro Ota ◽  
Kikuo Yamabe
2007 ◽  
Vol 556-557 ◽  
pp. 675-678 ◽  
Author(s):  
Kevin Matocha ◽  
Richard Beaupre

Thermal oxides on 4H-SiC are characterized using time-dependent dielectric breakdown techniques at electric fields between 6 and 10 MV/cm. At 250°C, oxides thermally-grown using N2O with NO annealing achieve a mean time to failure (MTTF) of 2300 hours at 6 MV/cm. Oxides grown in steam with NO annealing show approximately four times longer MTTF than N2O-grown oxides. At electric fields greater than 8 MV/cm, Fowler-Nordheim tunneling significantly reduces the expected failure times. For this reason, extrapolation of mean-time to failure at low fields must be performed by datapoints measured at lower electric fields.


2003 ◽  
Vol 766 ◽  
Author(s):  
Ahila Krishnamoorthy ◽  
N.Y. Huang ◽  
Shu-Yunn Chong

AbstractBlack DiamondTM. (BD) is one of the primary candidates for use in copper-low k integration. Although BD is SiO2 based, it is vastly different from oxide in terms of dielectric strength and reliability. One of the main reliability concerns is the drift of copper ions under electric field to the surrounding dielectric layer and this is evaluated by voltage ramp (V-ramp) and time dependent dielectric breakdown (TDDB). Metal 1 and Metal 2 intralevel comb structures with different metal widths and spaces were chosen for dielectric breakdown studies. Breakdown field of individual test structures were obtained from V-ramp tests in the temperature range of 30 to 150°C. TDDB was performed in the field range 0.5 – 2 MV/cm. From the leakage between combs at the same level (either metal 1 or metal 2) Cu drift through SiC/BD or SiN/BD interface was characterized. It was found that Cu/barrier and barrier/low k interfaces functioned as easy paths for copper drift thereby shorting the lines. Cu/SiC was found to provide a better interface than Cu/SiN.


2021 ◽  
Vol 68 (5) ◽  
pp. 2220-2225
Author(s):  
Stefano Dalcanale ◽  
Michael J. Uren ◽  
Josephine Chang ◽  
Ken Nagamatsu ◽  
Justin A. Parke ◽  
...  

2007 ◽  
Vol 46 (No. 28) ◽  
pp. L691-L692 ◽  
Author(s):  
Takashi Miyakawa ◽  
Tsutomu Ichiki ◽  
Junichi Mitsuhashi ◽  
Kazutoshi Miyamoto ◽  
Tetsuo Tada ◽  
...  

Author(s):  
Federico Giuliano ◽  
Susanna Reggiani ◽  
Elena Gnani ◽  
Antonio Gnudi ◽  
Mattia Rossetti ◽  
...  

2020 ◽  
Vol 41 (10) ◽  
pp. 1460-1463
Author(s):  
Melissa Arabi ◽  
Xavier Garros ◽  
Jacques Cluzel ◽  
Mustapha Rafik ◽  
Xavier Federspiel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document