Degradation of Protective Al - Si Coatings during Exploitation of Gas Turbine Blades

2007 ◽  
Vol 567-568 ◽  
pp. 309-312 ◽  
Author(s):  
Marta Kianicová ◽  
Jaroslav Pokluda

Diffusion Al-Si coatings are often used to protect rotor blades of aircraft engines against high-temperature corrosion in environments containing sulfur compounds. Besides other microstructural changes, the degradation of AlSi layers can be indicated by an increasing amount of surface oxide phases and changes in parameters of the layer geometry. In practice, the timetemperature area beyond a critical temperature of the outgoing gas is used as an empirical exploitation parameter D indicating a degradation level. The efficiency of such approach was investigated by analyzing degradation features in the surface layers of rotor blades after exploitations corresponding to different values of D. Determined simple relationships between the relative thickness of degraded layer and the parameter D verify the methodology and yield its clear geometrical interpretation. However, this method fails to provide reasonable information in case when the gas is burning outside the combustion chamber due to a sudden decrease of turbine revolutions.

1992 ◽  
Vol 114 (1) ◽  
pp. 123-131 ◽  
Author(s):  
T. Korakianitis

This article investigates the generation of unsteady forces on turbine blades due to potential-flow interaction and viscous-wake interaction from upstream blade rows. A computer program is used to calculate the unsteady forces on the rotor blades. Results for typical stator-to-rotor-pitch ratios and stator outlet-flow angles show that the first spatial harmonic of the unsteady force may decrease for higher stator-to-rotor-pitch ratios, while the higher spatial harmonics increase. This (apparently counterintuitive) trend for the first harmonic, and other blade row interaction issues, are explained by considering the mechanisms by which the viscous wakes and the potential-flow interaction affect the flow field. The interaction mechanism is shown to vary with the stator-to-rotor-pitch ratio and with the outlet flow angle of the stator. It is also shown that varying the axial gap between rotor and stator can minimize the magnitude of the unsteady part of the forces generated by the combined effects of the two interactions.


Author(s):  
Mark Van Roode ◽  
Jose Aurrecoechea

A rainbow field test sponsored by the Electric Power Research Institute (EPRI) under contract RP2465-1 was performed to evaluate the comparative hot corrosion resistance of commercially available coatings for gas turbine blades and vanes. The 10,307-hr field test was carried out on a Solar Turbines Incorporated Centaur T-4000 gas turbine operating on a lower grade liquid fuel at the Favianca site of the Owens-Illinois, Inc. glass manufacturing facility in Valera, Venezuela. This paper reviews the results of an evaluation of the performance of three modified aluminides, three MCrAlY overlays, and one duplex NiCoCrAlY/ZrO2-2OY2O3 overlay applied as coatings to the first-stage MAR-M421 and IN-738LC rotor blades, Visual and metallographic examination and remnant coating thickness measurements established that the MCrAlY overlay coatings were generally more effective than a Cr-aluminide and two Pt-aluminides protecting the first-stage blades. Individual differences between the various coatings were established. A remnant coating thickness index (RCTI) was defined to express coating survival and protectiveness quantitatively. The results of blade airfoil temperature estimates were correlated with the hot corrosion morphology.


2013 ◽  
Vol 592-593 ◽  
pp. 712-715
Author(s):  
Marta Kianicová ◽  
Jaroslav Pokluda

Fracture surfaces of two sets of rotor blades failed after strong testing procedures of aircraft engines in the test-stand are investigated by means of SEM. While the process of fatigue fracture in the first set of blades did not reveal any defect features, both the initiation and propagation of fatigue cracks was strongly influenced by casting defects.


1992 ◽  
Vol 114 (1) ◽  
pp. 114-122 ◽  
Author(s):  
T. Korakianitis

This article investigates the generation of unsteady forces on turbine blades due to potential-flow interaction and viscous-wake interaction from upstream blade rows. A computer program is used to calculate the unsteady forces on the rotor blades. Results are obtained by modeling the effects of the stator viscous wake and the stator potential-flow field on the rotor flow field. The results for one steady and one unsteady flow case are compared with known analytical and experimental data. The amplitudes for the two types of interaction are based on an analysis of available viscous wake data, on measurements of the potential-flow disturbance downstream of typical turbine stators, and on a parametric study of the effects of the amplitudes on the results of the unsteady forces generated on a typical turbine rotor cascade.


Author(s):  
E. F. Koch ◽  
E. L. Hall ◽  
S. W. Yang

The plane-front solidified eutectic alloys consisting of aligned tantalum monocarbide fibers in a nickel alloy matrix are currently under consideration for future aircraft and gas turbine blades. The MC fibers provide exceptional strength at high temperatures. In these alloys, the Ni matrix is strengthened by the precipitation of the coherent γ' phase (ordered L12 structure, nominally Ni3Al). The mechanical strength of these materials can be sensitively affected by overall alloy composition, and these strength variations can be due to several factors, including changes in solid solution strength of the γ matrix, changes in they γ' size or morphology, changes in the γ-γ' lattice mismatch or interfacial energy, or changes in the MC morphology, volume fraction, thermal stability, and stoichiometry. In order to differentiate between these various mechanisms, it is necessary to determine the partitioning of elemental additions between the γ,γ', and MC phases. This paper describes the results of such a study using energy dispersive X-ray spectroscopy in the analytical electron microscope.


Alloy Digest ◽  
2004 ◽  
Vol 53 (12) ◽  

Abstract Udimet L-605 is a high-temperature aerospace alloy with excellent strength and oxidation resistance. It is used in applications such as gas turbine blades and combustion area parts. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: CO-109. Producer or source: Special Metals Corporation.


Sign in / Sign up

Export Citation Format

Share Document