Gas Tungsten Arc Welding and Hybrid Laser-TIG Welding Temperature Field Analysis of AZ31B Magnesium Alloy

2008 ◽  
Vol 575-578 ◽  
pp. 837-842 ◽  
Author(s):  
Guo Li Liang ◽  
Shao Qiang Yuan ◽  
Guang Tao Zhou ◽  
Xiao Dong Sun ◽  
Yu Mang

In this particular work, the moving Gauss heat source model based on the gas tungsten arc welding and a new heat source model based on the laser-TIG hybrid welding were developed by the finite element analysis according to the physical characteristic of the TIG welding and the laser-TIG hybrid welding, Taking into account the advice of parameter modification, the modeling was respectively carried out by the single TIG and the laser-TIG hybrid welding for AZ31B magnesium alloy. The welding temperature field and the weld cross-section geometry were simulated separately with regard to dependence on the single TIG and the laser-TIG hybrid welding. Comparing the experimentally measured value with simulated value of the weld section geometry, the simulated and the experimentally determined weld section geometry by the single TIG welding and the hybrid welding showed a good agreement, at the same time, the microstructures of the joint were also discussed respectively.

2019 ◽  
Vol 815 ◽  
pp. 120-124 ◽  
Author(s):  
Zhong Lin Hou ◽  
Tan Zhao ◽  
Zhen Xu ◽  
Long Hao Zhu ◽  
Jian Hua Sun ◽  
...  

A new heat source model consisted of inverted conical heat source and rotary Gauss body heat source is established using the CAE software for the keyhole effect of laser-TIG hybrid welding. The inverted conical heat source is used for analyzing the wide upper part of weld pool due to the rapid heat up by the laser and arc. The rotary Gauss body heat source model is used for analyzing the long and narrow lower part of weld pool formed by the laser. The result showed that, compared with other single source mode, this new heat source model may get a better simulation of the weld pool morphology, especially the inflection point near the keyhole. It provides a new method to predict the morphology and size of the weld pool of magnesium alloy laser-TIG welding.


2011 ◽  
Vol 704-705 ◽  
pp. 786-789
Author(s):  
Guang Tao Zhou ◽  
Zi Yu Zhao ◽  
Guo Li Liang ◽  
Wei Hua Chen

Based on the gas tungsten arc welding process this paper investigated the welding temperature field measurement and simulation of 945 steel plate and AZ31B magnesium alloy, using a non-contact and fast response measured temperature method-Infrared Radiation (IR)-which utilized the baffle to remove the arc and hot tungsten electrode interference, the top-face temperature of AZ31B magnesium alloy plate and 945 steel plate. The results indicated that the lengthwise isothermal map of 945 steel plate is much longer than that of AZ31B magnesium alloy plate, which leads to the most temperature field information loss, this is because the thermal conductivity of steel is small and decreases with temperature increase, the thermal conductivity of AZ31B magnesium alloy is much bigger that that of the 945 steel, about 1.5 times of 945 steel, and increased with temperature increase. The results also showed using IR to measure the welding temperature of magnesium alloy is more difficult than 945 steel. Keywords: magnesium alloy, high strength steel, welding temperature field, IR


2014 ◽  
Vol 488-489 ◽  
pp. 83-89 ◽  
Author(s):  
Z.K. Song ◽  
Z.Y. Li ◽  
J. Xu ◽  
Y.C. Sun

This article studies the effects of heat source shape parameter and welding speed on the evolution of welding temperature field for Q345 plan carbon steel. The heat input and heat source parameters as well as the welding speed are defined by applying DFLUX subroutine in ABAQUS to simulate the transient welding temperature. The effects of heat resource shape parameters and heat input as well as the welding speed on welding temperature field are investigated by means of finite element analysis. It has been found that heat source parameters and welding speed show strong influence on temperature distribution in FZ (fusion zone) and HAZ (heat-affected zone). Meanwhile, it shows a roughly linear relationship between the changes of heat input and the highest temperature.


2013 ◽  
Vol 661 ◽  
pp. 158-161
Author(s):  
Guo Hong Ma ◽  
Zhao Yang Zhang ◽  
Jia Ye

In this paper we used ANSYS finite element software to simulate the temperature field in 7a52 aluminum alloy double-arc welding process and analyze the welding seam's forming characteristics. We conducted the welding temperature field numerical simulation in the same welding seam forming conditions by loading heat source of single-arc and double-arc separately, which used gauss heat source model and used voltage, welding current and speed as key parameters. The experiments indicated that the designed double-arc heat source model could generally represent the double-arc welding process. Compared with single-arc welding process, the double-arc welding had higher welding efficiency and narrower heat affected zone. Furthermore, the temperature of double-arc welding pool raised faster. All these advantages could improve the welding efficiency.


2011 ◽  
Vol 383-390 ◽  
pp. 6728-6734
Author(s):  
A. Moarrefzadeh ◽  
M.R.Isvand Zibaei

In this paper, the plasma arc welding is studied and stainless steel temperature field is gained in this process. The available heat source models, either planar one like Gaussian or body ones like double-ellipsoidal and rotary Gaussian modes, are unable to describe the keyhole PAW process accurately. Based on the configuration feature of keyhole PAW welds, a combined heat source model is proposed for the numerical analysis of temperature fields in keyhole PAW process. Numerical simulation of welding process in SIMPELC method and by ANSYS software for gaining the temperature field of stainless steel, the effect of parameter variation on temperature field and process optimization for different cases of plasma and shielding gases(Argon, Helium), are done.


2020 ◽  
Vol 92 (5) ◽  
pp. 25-35
Author(s):  
Damian Rochalski ◽  
Dariusz Golański ◽  
Jacek Szulc

Hybrid welding processes belong to a new group of welding varieties that most often combine two classic welding methods, such as laser welding with MIG/MAG welding or plasma welding with MAG welding. Modeling of welding stresses in this type of welding requires the definition of a new type of heat source model that combines a concentrated stream of energy with a classic heat source, which occurs in an electric arc. The paper presents the results of temperature field modeling in conventional MAG welding and hybrid plasma-MAG welding. In the first case, the heat source model described by Goldak was used, and in the second case, the Goldak model was combined with the developed rectangular heat source model with a homogeneous distribution. The temperature distributions obtained from the simulations were verified by spot temperature measurements during welding with thermocouples. A fairly good agreement of the numerical analysis results with the temperature measurements for MAG welding was obtained, while in the case of hybrid welding the discrepancies between the modeling and temperature measurements were greater. The results were discussed, indicating potential causes and factors influencing the obtained test results.


Sign in / Sign up

Export Citation Format

Share Document