Measurement of Through-Thickness Residual Stress in Primary Piping of Girth Welded Joint

2008 ◽  
Vol 580-582 ◽  
pp. 577-580
Author(s):  
Masahito Mochizuki ◽  
Shigetaka Okano ◽  
Gyu Baek An ◽  
Masao Toyoda

The welding residual stress of a butt-welded pipe joint is evaluated, using inherent strain analysis. The residual stress distribution is obtained in detail along the thickness direction. The residual stresses are similar to values obtained by direct measurement on the specimen surface; as if though direct measurement is not used for the inherent strain analysis. These results indicate that inherent strain analysis is effective in evaluating through-thickness residual stress in primary piping of girth welded joint.

1999 ◽  
Vol 122 (1) ◽  
pp. 98-103 ◽  
Author(s):  
Masahito Mochizuki ◽  
Makoto Hayashi ◽  
Toshio Hattori

Direct measurements and computed distributions of through-thickness residual stress in a pipe butt-welded joint and a pipe socket-welded joint are compared. The analytical evaluation methods used were inherent strain analysis and thermal elastic-plastic analysis. The experimental methods were neutron diffraction for the internal residual stress, and X-ray diffraction and strain-gauge measurement for the surface stress. The residual stress distributions determined using these methods agreed well with each other, both for internal stress and surface stress. The characteristics of the evaluation methods and the suitability of these methods for each particular welded object to be evaluated are discussed. [S0094-4289(00)01501-2]


1999 ◽  
Vol 121 (4) ◽  
pp. 353-357 ◽  
Author(s):  
M. Mochizuki ◽  
M. Hayashi ◽  
T. Hattori

We present a new and simplified method of estimating residual stress in welded structures by using inherent strain. The method makes use of elastic analysis by means of the finite element method and is used to calculate the residual stress in complicated three-dimensional structures efficiently. The inherent strain distribution in a welded joint of a small-diameter pipe penetrating a pressure vessel was assumed to be a simple distribution, and the residual stress was calculated. Inherent strain distributions were inferred from those of welded joints with simple shapes. The estimated residual stress using these inferred inherent strains agrees well with the measurements of a mock-up specimen. The proposed method is a simple way to estimate welding residual stress in three-dimensional structures of complicated shapes.


Author(s):  
Akira Maekawa ◽  
Shigeru Takahashi ◽  
Hisashi Serizawa ◽  
Hidekazu Murakawa

An efficient and reliable method for welding residual stress analysis is reported in this paper. The analysis method to calculate the residual stress using the iterative substructure method was developed and compared with a conventional one using a commercial finite element analysis code; comparisons were made for the analysis accuracy and the computational speed of the residual stress in a welded pipe joint. The residual stress distributions obtained by the both methods agreed well with each other. Moreover, it was clarified that the developed method could calculate the residual stress in a shorter computing time and could calculate the residual stress distribution much faster with nearly the same accuracy as the conventional method when the size of the welding structure was large.


1999 ◽  
Vol 122 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Masahito Mochizuki ◽  
Makoto Hayashi ◽  
Toshio Hattori

Residual stress in a large-diameter multi-pass butt-welded pipe joint was calculated for various welding pass sequences by thermal elastic-plastic analysis using the finite element method. The pipe joint used had an X-shaped groove, and the sequences of welding passes were changed. The distribution of residual stress depends on the welding pass sequences. The mechanism that produces residual stress in the welded pipe joint was studied in detail by using a simple prediction model. An optimum welding sequence for preventing stress-corrosion cracking was determined from the residual stress distribution. [S0094-9930(00)00701-0]


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Keiji Nakacho ◽  
Naoki Ogawa ◽  
Takahiro Ohta ◽  
Michisuke Nayama

The stress that exists in a body under no external force is called the inherent stress. The strain that is the cause (source) of this stress is called the inherent strain. This study proposes a general theory of an inherent-strain-based measurement method for the residual stress distributions in arbitrary three-dimensional bodies and applies the method to measure the welding residual stress distribution of a welded joint in a reactor vessel. The inherent-strain-based method is based on the inherent strain and the finite element method. It uses part of the released strains and solves an inverse problem by a least squares method. Thus, the method gives the most probable value and deviation of the residual stress. First, the basic theory is explained in detail, and then a concrete measurement method for a welded joint in a reactor vessel is developed. In the method, the inherent strains are unknowns. In this study, the inherent strain distribution was expressed with an appropriate function, significantly decreasing the number of unknowns. Five types of inherent strain distribution functions were applied to estimate the residual stress distribution of the joint. The applicability of each function was evaluated. The accuracy and reliability of the analyzed results were assessed in terms of the residuals, the unbiased estimate of the error variance, and the welding mechanics. The most suitable function, which yields the most reliable result, was identified. The most reliable residual stress distributions of the joint are shown, indicating the characteristics of distributions with especially large tensile stress that may produce a crack.


2007 ◽  
Vol 345-346 ◽  
pp. 1469-1472
Author(s):  
Gab Chul Jang ◽  
Kyong Ho Chang ◽  
Chin Hyung Lee

During manufacturing the welded joint of steel structures, residual stress is produced and weld metal is used inevitably. And residual stress and weld metal influence on the static and dynamic mechanical behavior of steel structures. Therefore, to predict the mechanical behavior of steel pile with a welded joint during static and dynamic deformation, the research on the influence of the welded joints on the static and dynamic behavior of steel pile is clarified. In this paper, the residual stress distribution in a welded joint of steel piles was investigated by using three-dimensional welding analysis. The static and dynamic mechanical behavior of steel piles with a welded joint is investigated by three-dimensional elastic-plastic finite element analysis using a proposed dynamic hysteresis model. Numerical analyses of the steel pile with a welded joint were compared to that without a welded joint with respect to load carrying capacity and residual stress distribution. The influence of the welded joint on the mechanical behavior of steel piles during static and dynamic deformation was clarified by comparing analytical results


Sign in / Sign up

Export Citation Format

Share Document