The Protective Role of Poly(Borosiloxanes)-Derived Ceramics in Carbon Fiber Composites

2008 ◽  
Vol 587-588 ◽  
pp. 182-186 ◽  
Author(s):  
Renato Luiz Siqueira ◽  
Luiz Claudio Pardini ◽  
Inez Valéria Pagotto Yoshida ◽  
Marco Antônio Schiavon

This work reports the synthesis and thermal characterization of poly(borosiloxanes) (PBS) derived from methyltrietoxysilane (MTES) and vinyltriethoxysilane (VTES), aiming to use these polymers as precursors of ceramic matrices for the protection of carbon fibers in ceramic matrix composites (CMCs). The resulting materials exhibited better thermal stability than the carbon fiber, especially the Cfiber/SiBCO composite derived of the methyltriethoxysilane (MTES) system prepared with a B/Si ratio of 0.5. This study showed that poly(borosiloxanes) are promising materials for the oxidation protection of carbon fibers, and consequently for thermal protection systems.

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1319 ◽  
Author(s):  
Ran Li ◽  
Huiping Lin ◽  
Piao Lan ◽  
Jie Gao ◽  
Yan Huang ◽  
...  

Lightweight electromagnetic interference shielding cellulose foam/carbon fiber composites were prepared by blending cellulose foam solution with carbon fibers and then freeze drying. Two kinds of carbon fiber (diameter of 7 μm) with different lengths were used, short carbon fibers (SCF, L/D = 100) and long carbon fibers (LCF, L/D = 300). It was observed that SCFs and LCFs built efficient network structures during the foaming process. Furthermore, the foaming process significantly increased the specific electromagnetic interference shielding effectiveness from 10 to 60 dB. In addition, cellulose/carbon fiber composite foams possessed good mechanical properties and low thermal conductivity of 0.021–0.046 W/(m·K).


2020 ◽  
Vol 40 (5) ◽  
pp. 415-420 ◽  
Author(s):  
Yasin Altin ◽  
Hazal Yilmaz ◽  
Omer Faruk Unsal ◽  
Ayse Celik Bedeloglu

AbstractThe interfacial interaction between the fiber and matrix is the most important factor which influences the performance of the carbon fiber-epoxy composites. In this study, the graphitic surface of the carbon fibers was modified with graphene oxide nanomaterials by using a spray coating technique which is an easy, cheap, and quick method. The carbon fiber-reinforced epoxy matrix composites were prepared by hand layup technique using neat carbon fibers and 0.5, 1 and 2% by weight graphene oxide (GO) modified carbon fibers. As a result of SEM analysis, it was observed that GO particles were homogeneously coated on the surface of the carbon fibers. Furthermore, Young's modulus increased from 35.14 to 43.40 GPa, tensile strength increased from 436 to 672 MPa, and the elongation at break was maintained around 2% even in only 2% GO addition.


Author(s):  
Andi Udayakumar ◽  
M. Rizvan Basha ◽  
Sarabjit Singh ◽  
Sweety Kumari ◽  
V. V. Bhanu Prasad

Cerâmica ◽  
2013 ◽  
Vol 59 (351) ◽  
pp. 351-359 ◽  
Author(s):  
F. M. Bertan ◽  
A. P. Novaes de Oliveira ◽  
O. R. K. Montedo ◽  
D. Hotza ◽  
C. R. Rambo

This work reports on the characterization of ZrSiO4 particulate-reinforced Li2O-ZrO2-SiO2-Al2O3 (LZSA) glass-ceramic matrix composites. The typical physical/mechanical and chemical properties of the glass batches and the composites were measured. A composition with 60 wt.% ZrSiO4 was preliminarily selected because it demonstrated the highest values of bending strength (190 MPa) and deep abrasion resistance (51 mm³). To this same composition was given a 7 wt.% bentonite addition in order to obtain plasticity behavior suitable for extrusion. The sintered samples (1150 ºC for 10 min) presented a thermal linear shrinkage of 14% and bending strength values of 220 MPa.


Sign in / Sign up

Export Citation Format

Share Document