Controlled attachment of polycarbonate nanoparticles on carbon fibers for increased resin impregnation and interfacial adhesion in carbon fiber composites

Author(s):  
Ting-Ting Yao ◽  
Xiao-Fang Zhang ◽  
Wei-Song Zhang ◽  
Yu-Ting Liu ◽  
Qingfeng Liu ◽  
...  
2017 ◽  
Vol 890 ◽  
pp. 44-49
Author(s):  
Mohamed H. Gabr ◽  
Kiyoshi Uzawa

In our previous study we showed the the potential of using of sub-micro Alumina/Titanium (ALTi) particles as a multifunctional reinforcement which can produce multifunctional polymer composites. This paper aims to investigate the interfacial shear properties for different contents of ALTi particles incorporated into PA6 with de-sized carbon fiber. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Sizing removal can reduce the acid parameter of carbon fibers surface promoting bonding strength at the fiber/matrix interface which is a desirable property for the carbon fiber composites. XPS also, showed that epoxide group still appeared with using acetone treatment while disappeared with conventional heating at the oven for 25min ate 450oC. SEM images did not show any damage for the carbon fiber after heat treatment. Interfacial shear strength (IFSS) showed an improvement in interfacial adhesion with de-sizing carbon fiber than neat PA6.


Author(s):  
Р. Ш. Іскандаров ◽  
Н. В. Сова ◽  
Б. М. Савченко ◽  
І. І. П'ятничук ◽  
В. А. Татаренко

Study of the FFF additive manufacturing process of composite material based on L – polylactide (PLLA) with ultra-short carbon fibers. Tensile strength and elongation at break for all test specimens were determined according to ISO 527. Tensile modulus - ASTM D638-10, specimen density - PN-EN ISO 1183, microscopic examination - according to ASTM E2015 - 04 (2014). Charpy Shock Tests ISO 179 and ASTM D256. Bending test method ISO 178 and ASTM D 790. The rational modes of FFF additive manufacturing (AM) of carbon fiber composite based on PLLA was established. Properties of carbon fiber PLLA and unfilled PLLA was determinated for AM formed samples and injection molded samples. Carbon fiber composites have significantly higher flexural and tensile module us values compared to the original L-polylactide, which is due to the effect of polymer matrix reinforcement by the fibrous component. However, finished products obtained by AM PLLA carbon composite have a lower impact strength and tensile strength, which is likely to be due to the fact that the carbon fibers are short (50-60 mkm) and have a cavitations effect during injection molding and AM. Density of carbon fiber filled PLLLA was lower the theoretically calculated value for filament material as well for injection molded and AM formed samples. Density reduction probably the main cause of impact properties deterioration due to cavity forming around carbon fibers. Density and tensile properties of AM formed samples can be changed by AM slicing parameter – extrusion multiplier. Cavitation effect for carbon fiber composites observed for PLLA composite in form AM filament, injection molded parts and AM formed samples. Cavity forming was confirmed by optical microscopy and density measurement. Possible reason for cavity forming is orientation deformation of the fiber in polymer matrix during the formation of the filament. The effect of cavitation also persists in the AM of products from carbon composites due to the passage of the orientation at the exit of the printer nozzle.  The possibility of regulating the density and physical and mechanical properties of carbon composite products obtained by the additive manufacturing method has been established. Selection of rational values of the extrusion multiplier and the direction of the layers in the additive molding allows you to create products with the desired complex of properties.


Carbon ◽  
2020 ◽  
Vol 158 ◽  
pp. 704-710 ◽  
Author(s):  
Qiang Chen ◽  
Qingyu Peng ◽  
Xu Zhao ◽  
Hao Sun ◽  
Shasha Wang ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 684 ◽  
Author(s):  
Chukov ◽  
Nematulloev ◽  
Zadorozhnyy ◽  
Tcherdyntsev ◽  
Stepashkin ◽  
...  

The paper studies new high-temperature thermoplastic impregnated unidirectional carbon fiber composites. The research focuses on the effect of thermal and chemical oxidation of the carbon fibers surface on the interfacial interaction between fibers and polysulfone and polyphenylene sulfide as well as thermal and mechanical properties of the composites. The research reveals the interaction between carbon fibers and the polymer matrix depend both on the type of surface treatment and nature of the polymer. The chemical oxidation of carbon fibers results in good interfacial interaction, and the best mechanical properties were observed for tows impregnated with polyphenylene sulfide.


2015 ◽  
Vol 1088 ◽  
pp. 640-643
Author(s):  
Letícia Couto Aguiar ◽  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
Francisco Antonio Rocco Lahr ◽  
André L. Christoforo ◽  
...  

The modulus of elasticity is an important property for the behavior analysis of concrete structures. This research evaluated the strain difference between concrete specimens with and without the application of laminate carbon fiber composites as well as the variation time, in months, of the axial strength compression and modulus of elasticity. Through the experimental results, it is concluded that increases in compressive strength and modulus of elasticity are more significant in the specimens without reinforcement.


Sign in / Sign up

Export Citation Format

Share Document