Wafer Level Recombination Carrier Lifetime Measurements of 4H-SiC PiN Epitaxial Wafers

2009 ◽  
Vol 615-617 ◽  
pp. 287-290 ◽  
Author(s):  
Gil Yong Chung ◽  
Mark J. Loboda ◽  
Mike F. MacMillan ◽  
Jian Wei Wan

Effective recombination lifetimes of 4H-SiC PiN epitaxy wafers are measured by -PCD (microwave photoconductive decay) system at wafer level. Lifetimes measured in presence and absence of the p+ layer show lower lifetime values with p+ layer present. This is attributed to high recombination rate at p+/n- interface. Lifetimes at various buffer thicknesses show lower values at the buffer layer of about 50 m due to high interface recombination rate resulting from rougher surface of the buffer layer. Lifetimes of PiN wafers from interrupted and continuous p+/n- growth are very comparable.

1993 ◽  
Vol 32 (Part 2, No. 9B) ◽  
pp. L1362-L1364 ◽  
Author(s):  
Chiyo Fujihira ◽  
Michel Morin ◽  
Hidehisa Hashizume ◽  
Jean Friedt ◽  
Yasuhide Nakai ◽  
...  

2021 ◽  
Vol 118 (25) ◽  
pp. 252105
Author(s):  
K. Yokoyama ◽  
J. S. Lord ◽  
J. Miao ◽  
P. Murahari ◽  
A. J. Drew

2018 ◽  
Vol 924 ◽  
pp. 269-272 ◽  
Author(s):  
Shinichi Mae ◽  
Takeshi Tawara ◽  
Hidekazu Tsuchida ◽  
Masashi Kato

For high voltage SiC bipolar devices, carrier lifetime is an important parameter, and for optimization of device performance, we need to control distribution of the carrier lifetime in a wafer. So far, there have been limited systems for depth-resolved carrier lifetime measurements without cross sectional cut. In this study, we adopted a free carrier absorption technique and made local overlapping of the probe laser light with excitation laser light to develop depth-resolved carrier lifetime measurements. We named the developed system a microscopic FCA system and demonstrated measurement results for samples with and without intentional carrier lifetime distribution.


2013 ◽  
Vol 1536 ◽  
pp. 119-125 ◽  
Author(s):  
Guillaume Courtois ◽  
Bastien Bruneau ◽  
Igor P. Sobkowicz ◽  
Antoine Salomon ◽  
Pere Roca i Cabarrocas

ABSTRACTWe propose an implementation of the PCD technique to minority carrier effective lifetime assessment in crystalline silicon at 77K. We focus here on (n)-type, FZ, polished wafers passivated by a-Si:H deposited by PECVD at 200°C. The samples were immersed into liquid N2 contained in a beaker placed on a Sinton lifetime tester. Prior to be converted into lifetimes, data were corrected for the height shift induced by the beaker. One issue lied in obtaining the sum of carrier mobilities at 77K. From dark conductance measurements performed on the lifetime tester, we extracted an electron mobility of 1.1x104 cm².V-1.s-1 at 77K, the doping density being independently calculated in order to account for the freezing effect of dopants. This way, we could obtain lifetime curves with respect to the carrier density. Effective lifetimes obtained at 77K proved to be significantly lower than at RT and not to depend upon the doping of the a-Si:H layers. We were also able to experimentally verify the expected rise in the implied Voc, which, on symmetrically passivated wafers, went up from 0.72V at RT to 1.04V at 77K under 1 sun equivalent illumination.


Sign in / Sign up

Export Citation Format

Share Document