radiative recombination rate
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 1)

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3310
Author(s):  
Yijie Xia ◽  
Shuaishuai Du ◽  
Pengju Huang ◽  
Luchao Wu ◽  
Siyu Yan ◽  
...  

The temperature-dependent photoluminescence (PL) properties of an anti-perovskite [MnBr4]BrCs3 sample in the temperature range of 78–500 K are studied in the present work. This material exhibits unique performance which is different from a typical perovskite. Experiments showed that from room temperature to 78 K, the luminous intensity increased as the temperature decreased. From room temperature to 500 K, the photoluminescence intensity gradually decreased with increasing temperature. Experiments with varying temperatures repeatedly showed that the emission wavelength was very stable. Based on the above-mentioned phenomenon of the changing photoluminescence under different temperatures, the mechanism is deduced from the temperature-dependent characteristics of excitons, and the experimental results are explained on the basis of the types of excitons with different energy levels and different recombination rates involved in the steady-state PL process. The results show that in the measured temperature range of 78–500 K, the steady-state PL of [MnBr4]BrCs3 had three excitons with different energy levels and recombination rates participating. The involved excitons with the highest energy level not only had a high radiative recombination rate, but a high non-radiative recombination rate as well. The excitons at the second-highest energy level had a similar radiative recombination rate to the lowest energy level excitons and a had high non-radiative recombination rate. These excitons made the photoluminescence gradually decrease with increasing temperature. This may be the reason for this material’s high photoluminescence efficiency and low electroluminescence efficiency.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zikang Ye ◽  
Xing Lin ◽  
Na Wang ◽  
Jianhai Zhou ◽  
Meiyi Zhu ◽  
...  

AbstractPhonon-assisted up-conversion photoluminescence can boost energy of an emission photon to be higher than that of the excitation photon by absorbing vibration energy (or phonons) of the emitter. Here, up-conversion photoluminescence power-conversion efficiency (power ratio between the emission and excitation photons) for CdSe/CdS core/shell quantum dots is observed to be beyond unity. Instead of commonly known defect-assisted up-conversion photoluminescence for colloidal quantum dots, temperature-dependent measurements and single-dot spectroscopy reveal the up-conversion photoluminescence and conventional down-conversion photoluminescence share the same electron-phonon coupled electronic states. Ultrafast spectroscopy results imply the thermalized excitons for up-conversion photoluminescence form within 200 fs, which is 100,000 times faster than the radiative recombination rate of the exciton. Results suggest that colloidal quantum dots can be exploited as efficient, stable, and cost-effective emitters for up-conversion photoluminescence in various applications.


2020 ◽  
Vol 116 (18) ◽  
pp. 181104 ◽  
Author(s):  
Joshua M. McMahon ◽  
Daniel S. P. Tanner ◽  
Emmanouil Kioupakis ◽  
Stefan Schulz

2020 ◽  
Vol 8 (32) ◽  
pp. 11201-11208
Author(s):  
Yang Mi ◽  
Yaoyao Wu ◽  
Jinchun Shi ◽  
Sheng-Nian Luo

We have achieved single-mode whispering-gallery-mode lasing in CdS microflakes with sharp linewidth (∼0.12 nm) and high quality factor (∼4200). Such lasers are superior to previous CdS lasers in these lasing parameters. Through time-resolved photoluminescence measurements, electron–hole plasma recombination is established to be the lasing mechanism. The radiative recombination rate of CdS microflakes is enhanced by a factor of ∼4.7 due to the Purcell effect.


Sign in / Sign up

Export Citation Format

Share Document