Study on the Machinability of Glass Soda-Lime in Diamond Cutting Process

2009 ◽  
Vol 626-627 ◽  
pp. 47-52 ◽  
Author(s):  
Ming Zhou ◽  
P. Jia ◽  
M. Li

Glass possesses poor machinability in diamond cutting due to its high hardness and high brittleness. In order to investigate the effect of cutting fluids on the machinability of glass, this paper first conducted soda-lime indentation experiment, and then examined the resulting indentation by optical microscope. Based on this, turning tests were carried out to evaluate the influence of the cutting fluid properties on the machinability of glass. Boric acid solutions were selected as cutting fluids in the tests. The surface processing quality of soda-lime was assessed based on the observations of the micro- morphology of the turned surfaces utilizing AFM. Experimental results indicated that compared with the process without cutting fluid action, the machinability of glass soda-lime can be improved by using boric acid solution as the cutting fluid.

2010 ◽  
Vol 431-432 ◽  
pp. 126-129 ◽  
Author(s):  
Ming Zhou ◽  
Peng Jia ◽  
Min Li

In diamond cutting of optical glasses, the magnitude of critical depth of cut for brittle-ductile transition is an important factor affecting the machinability of the work material in terms of production rate and surface quality. In this work, scratching tests with increasing depths of cut were conducted on glass BK7 to evaluate the influence of the cutting fluid properties on the critical depth of cut. Boric acid solutions of different concentrations were selected as cutting fluids in the tests. The resulting scratches were examined utilizing a white light interferometer and the values of the critical depth of cut were determined based on the observations of the micro-morphology of the scratch surfaces produced. Experimental results indicated that compared with the process without cutting fluid action, the critical depth of cut in diamond cutting of glass BK7 can be increased by using boric acid solution as the cutting fluid.


2013 ◽  
Vol 589-590 ◽  
pp. 480-484 ◽  
Author(s):  
Peng Jia

In diamond cutting of optical glasses, the magnitude of critical depth of cut for brittle-ductile transition is an important factor affecting the machinability of the work material in terms of production rate and surface quality. In this work, scratching tests with increasing depths of cut were conducted on glass BK7 to evaluate the influence of the cutting fluid properties on the critical depth of cut. Boric acid solutions of different concentrations were selected as cutting fluids in the tests. The resulting scratches were examined utilizing a white light interferometer and the values of the critical depth of cut were determined based on the observations of the micro-morphology of the scratch surfaces produced. Experimental results indicated that compared with the process without cutting fluid action, the critical depth of cut in diamond cutting of glass BK7 can be increased by using boric acid solution as the cutting fluid.


2013 ◽  
Vol 770 ◽  
pp. 230-233 ◽  
Author(s):  
Peng Jia

In diamond cutting of optical glasses, the magnitude of critical depth of cut for brittle-ductile transition is an important factor affecting the machinability of the work material in terms of production rate and surface quality. In this work, scratching tests with increasing depths of cut were conducted on glass BK7 to evaluate the influence of the cutting fluid properties on the critical depth of cut. Boric acid solutions of different concentrations were selected as cutting fluids in the tests. The resulting scratches were examined utilizing a white light interferometer and the values of the critical depth of cut were determined based on the observations of the micro-morphology of the scratch surfaces produced. Experimental results indicated that compared with the process without cutting fluid action, the critical depth of cut in diamond cutting of glass BK7 can be increased by using boric acid solution as the cutting fluid.


2013 ◽  
Vol 579-580 ◽  
pp. 97-100
Author(s):  
Peng Jia

In diamond cutting of optical glasses, the magnitude of critical depth of cut for brittle-ductile transition is an important factor affecting the machinability of the work material in terms of production rate and surface quality. In this work, scratching tests with increasing depths of cut were conducted on glass BK7 to evaluate the influence of the cutting fluid properties on the critical depth of cut. Boric acid solutions of different concentrations were selected as cutting fluids in the tests. The resulting scratches were examined utilizing a white light interferometer and the values of the critical depth of cut were determined based on the observations of the micro-morphology of the scratch surfaces produced. Experimental results indicated that compared with the process without cutting fluid action, the critical depth of cut in diamond cutting of glass BK7 can be increased by using boric acid solution as the cutting fluid.


2010 ◽  
Vol 33 ◽  
pp. 123-127 ◽  
Author(s):  
Ming Zhou ◽  
P. Jia

The development of the ability to machine glass materials to optical tolerances is highly desirable. The machinability of glass is poor in diamond cutting due to the high hardness and the high brittleness of glass. In order to investigate the effects of cutting fluids on the machinability of glass, this paper selected boric acid solution and sodium carbonate solution as cutting fluids, and then scratching tests were carried out. The resulting scratches with and without cutting fluids was assessed based on the observations of the micro-morphology of the scratched grooves utilizing confocal microscope. Experimental results indicated that compared with the process without cutting fluids action, the machinability of glass BK7 can be improved by using boric acid solution or sodium carbonate solution as the cutting fluids.


2013 ◽  
Vol 589-590 ◽  
pp. 194-197 ◽  
Author(s):  
Peng Jia

For the technology of diamond cutting of optical glass, the machinability of glass is poor, which hindering the practical application of this technology. In order to investigate and ameliorate the machinability of glass, and achieve optical parts with the satisfied surface quality and dimensional accuracy, this paper first conducted SF6 indentation experiment by Vickers microhardness instrument, and then the scratching tests with increasing depths of cut were conducted on glass SF6 to evaluate the influence of the cutting fluid properties on the machinability of glass. Based on this, turning tests were carried out, and the surface quality of SF6 was assessed based on the detections of the machined surfaces roughness. Experimental results indicated that compared with the process of dry cutting, the machinability of glass SF6 can be improved by using the cutting fluid


2013 ◽  
Vol 770 ◽  
pp. 234-238 ◽  
Author(s):  
Peng Jia

For the technology of diamond cutting of optical glass, the machinability of glass is poor, which hindering the practical application of this technology. In order to investigate and ameliorate the machinability of glass, and achieve optical parts with the satisfied surface quality and dimensional accuracy, this paper first conducted SF6 indentation experiment by Vickers microhardness instrument, and then the scratching tests with increasing depths of cut were conducted on glass SF6 to evaluate the influence of the cutting fluid properties on the machinability of glass. Based on this, turning tests were carried out, and the surface quality of SF6 was assessed based on the detections of the machined surfaces roughness. Experimental results indicated that compared with the process of dry cutting, the machinability of glass SF6 can be improved by using the cutting fluid.


2013 ◽  
Vol 579-580 ◽  
pp. 16-20
Author(s):  
Peng Jia

For the technology of diamond cutting of optical glass, the machinability of glass is poor, which hindering the practical application of this technology. In order to investigate and ameliorate the machinability of glass, and achieve optical parts with the satisfied surface quality and dimensional accuracy, this paper first conducted SF6 indentation experiment by Vickers microhardness instrument, and then the scratching tests with increasing depths of cut were conducted on glass SF6 to evaluate the influence of the cutting fluid properties on the machinability of glass. Based on this, turning tests were carried out, and the surface quality of SF6 was assessed based on the detections of the machined surfaces roughness. Experimental results indicated that compared with the process of dry cutting, the machinability of glass SF6 can be improved by using the cutting fluid.


2021 ◽  
pp. 2150057
Author(s):  
M. K. MARICHELVAM ◽  
S. SENTHIL MURUGAN ◽  
K. MAHESWARAN ◽  
D. SHYAMPRASAD VARMA

Machining quality depends on numerous factors such as speed, feed rate, quality of the materials, the cutting fluids used and so on. The quality of machining components can also be improved by using appropriate cutting fluids. In this study, the three different types of eco-friendly cutting fluids based on coconut oil with nano boric acid particles were synthesized with nanoadditives and characterized during the lathe-turning operation of mild steel. The obtained results were compared between the dry/plain turning (without the cutting fluid) and the turning with the cutting fluids like coconut oil and mineral oil with nanoparticles. In industries, a wide variety of cutting fluids are used; however, most of these cutting fluids are made up of synthetic materials which may affect the environment significantly. Hence, it is essential to develop eco-friendly cutting fluids for environmental sustainability. Here, the cutting fluids were characterized by the morphological study on nanoparticles (400[Formula: see text]nm) and the machined surface using scanning electron microscope (SEM), viscosity test, flash and fire point, surface roughness on machined part, tool tip-workpiece interface temperature, cutting force and flank wear measurement. The results showed that cutting fluids with 0.5% of boric acid had better performance.


Author(s):  
Martin B. G. Jun ◽  
Suhas S. Joshi ◽  
Richard E. DeVor ◽  
Shiv G. Kapoor

An atomization-based cutting fluid application system is developed for micro-end milling. The system was designed to ensure spreading of the droplets on the workpiece surface based on the analysis of the atomized droplet impingement dynamics. The results of the initial experiments conducted to examine the viability of the system show that the cutting forces are lower and tool life is significantly improved with the atomized cutting fluids when compared to dry and flood cooling methods. Also, application of atomized cutting fluid is found to result in good chip evacuation and lower cutting temperature. Experiments were also conducted to study the effect of fluid properties on cutting performance, and the results show that cutting fluids with lower surface tension and higher viscosity perform better in terms of cutting forces.


Sign in / Sign up

Export Citation Format

Share Document