3D Milling by Micro Electrical Discharge Machining

2010 ◽  
Vol 659 ◽  
pp. 467-470
Author(s):  
Balázs Zsolt Farkas ◽  
Márton Takács

One of the most important tasks of the manufacturing engineering of our accelerated world is giving suitable answer to the ever growing demand on miniaturization arising on every field of the industry. Our institute has been carried out theoretical and experimental research work on micro machining since 10 years. Micro machining can be defined as formation of structures smaller than 1 mm. Our previous research activity focused primarily on micro milling process carried out by carbide end mill. Milling offers the most various machining method among the chip removal processes. Investigation of formation of micro structures by electrical discharge machining (EDM) is a perfect continuance of the research work. A process similar to micro milling can be realized by the lateral moving of the miniature cylindrical electrode of an EDM machine, just the physical principle of material removing is different. This paper introduces the latest results of our research work, including

2008 ◽  
Vol 375-376 ◽  
pp. 303-307
Author(s):  
Zhen Long Wang ◽  
Wei Liang Zeng ◽  
Qiang Gao

Micro electrical discharge machining (EDM) with block electro discharge grinding (BEDG), is explored and assessed as a method for developing micro electrode, for wire electro discharge grinding (WEDG) has shortcoming of low working efficiency, especially in the case of micro machining. For fabricating micro electrode by BEDG, mechanics of initial clamping errors are analyzed, the technology of electrode movement is proposed to compensate the clamping errors and control the finish size of micro electrodes. On the basis of a great deal of experiments, the effect of working voltage on machining efficiency has been found out and been analyzed theoretically, threshold value of working voltage is determined to be about 30V.As shown by result with the technology, at a high machining speed, the minimum diameter of micro electrodes reaches 3*m, its slenderness ratio is more than 5.


2009 ◽  
Vol 626-627 ◽  
pp. 279-284 ◽  
Author(s):  
Zi Long Peng ◽  
Zhen Long Wang ◽  
Yu Kui Wang ◽  
Ying Huai Dong ◽  
H. Chen

A reversible machining method using micro electrical discharge machining (EDM) was developed. This new method can achieve depositing or selective removing of metal material for the fabrication of micro structures. It is easy to transform the machining process from deposition to removal in one EDM machining system. In micro EDM deposition process, brass, tungsten and steel material can be deposited successfully. The deposited material has compact fine texture and combines close to workpiece. Then, micro complex structures by series deposition strategy and sub-deposition strategy were deposited. In the selective removal process, the machining effects of different working mediums were researched. Results show that the machining effect in liquid medium is better than that of in air. Finally, using the micro reversible EDM process, a micro square column with 0.070mm in side length, 0.750mm in height and a micro cylinder with 0.140mm in diameter, 1.180mm in height were fabricated.


2009 ◽  
Vol 69-70 ◽  
pp. 177-181
Author(s):  
Zi Long Peng ◽  
Zhen Long Wang ◽  
Ying Huai Dong ◽  
Hui Chen

Based on the principle of micro electrical discharge machining (EDM), a reversible machining method is proposed, which can achieve depositing or removing selectively metal material for the fabrication of micro structures. It is easy to transform the machining process from deposition to removal in one machining system. The characteristics of the deposited material show that the components of deposited material are almost the same as those of the tool electrode, and the metallurgical bonding has formed on the interface between the deposited material and the base. Moreover, the deposited material has well machinability in different micro EDM selective removal process, including micro EDM die-sinking and micro EDM milling. As a result, a micro square column with 0.1mm in side length, 0.88mm in height and a micro cylinder with 0.14mm in diameter, 1.18mm in height were fabricated by using the micro reversible EDM process.


2020 ◽  
Vol 13 (3) ◽  
pp. 219-229
Author(s):  
Baocheng Xie ◽  
Jianguo Liu ◽  
Yongqiu Chen

Background: Micro-Electrical Discharge Machining (EDM) milling is widely used in the processing of complex cavities and micro-three-dimensional structures, which is a more effective processing method for micro-precision parts. Thus, more attention has been paid on the micro-EDM milling. Objective : To meet the increasing requirement of machining quality and machining efficiency of micro- EDM milling, the processing devices and processing methods of micro-EDM milling are being improved continuously. Methods: This paper reviews various current representative patents related to the processing devices and processing methods of micro-EDM milling. Results: Through summarizing a large number of patents about processing devices and processing methods of micro-EDM milling, the main problems of current development, such as the strategy of electrode wear compensation and the development trends of processing devices and processing methods of micro-EDM milling are discussed. Conclusion: The optimization of processing devices and processing methods of micro-EDM milling are conducive to solving the problems of processing efficiency and quality. More relevant patents will be invented in the future.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


2018 ◽  
Vol 51 ◽  
pp. 198-207 ◽  
Author(s):  
Rimao Zou ◽  
Zuyuan Yu ◽  
Chengyang Yan ◽  
Jianzhong Li ◽  
Xin Liu ◽  
...  

2012 ◽  
Vol 591-593 ◽  
pp. 303-306
Author(s):  
Xiao You Zhang ◽  
Akio Kifuji ◽  
Dong Jue He

Electrical discharge machining has the capability of machining all conductive materials regardless of hardness, and has the ability to deal with complex shapes. However, the speed and accuracy of conventional EDM are limited by probability and efficiency of the electrical discharges. This paper describes a three degrees of freedom (3-DOF) controlled, wide-bandwidth, high-precision, long-stroke magnetic drive actuator. The actuator can be attached to conventional electrical discharge machines to realize a high-speed and high-accuracy EDM. The actuator primarily consists of thrust and radial magnetic bearings, thrust and radial air bearings and a magnetic coupling mechanism. By using the thrust and radial magnetic bearings, the translational motions of the spindle can be controlled. The magnetic drive actuator possesses a positioning resolution of the order of micrometer, a bandwidth greater than 100Hz and a positioning stroke of 2mm.


Sign in / Sign up

Export Citation Format

Share Document