Effects of Curing Method on the Gas Separation Performance of Phenolic Resin/Poly(vinyl Alcohol)-Based Carbon Membrane Materials

2011 ◽  
Vol 675-677 ◽  
pp. 1185-1188
Author(s):  
Bing Zhang ◽  
Yong Hong Wu ◽  
Tong Hua Wang ◽  
Jie Shan Qiu ◽  
Tie Jun Xu ◽  
...  

A novel cheap blended precursor phenolic resin/poly(vinyl alcohol) (PR/PVA) was developed to prepare carbon membranes. The effect of two curing methods (i.e., crosslinker and preoxidation) on the gas separation performance of their derived carbon membranes was investigated. Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to analyze the thermal stability of precursor and the changes in functional groups on membrane surface. The gas permeation of carbon membranes was tested for H2 and N2. The results show that PR, PR/PVA, and two PR/PVA cured samples have three thermal degradation stages. The thermal stability for original PR/PVA membrane is significantly improved via the method of preoxidation or crosslinker. Similar crosslinking structure is formed by the two curing methods. However, carbon membranes from crosslinker method present two-fold higher in hydrogen permeability and four-fold higher in selectivity than that from preoxidation method.

Membranes ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 82 ◽  
Author(s):  
Hemmat Shirvani ◽  
Saeid Maghami ◽  
Ali Pournaghshband Isfahani ◽  
Morteza Sadeghi

Polymer blending and mixed-matrix membranes are well-known modification techniques for tuning the gas separation properties of polymer membranes. Here, we studied the gas separation performance of mixed-matrix membranes (MMMs) based on the polyurethane/poly(vinyl alcohol) (PU/PVA) blend containing silica nanoparticles. Pure (CO2, CH4, N2, O2) and mixed-gas (CO2/N2 and CO2/CH4) permeability experiments were carried out at 10 bar and 35 °C. Poly(vinyl alcohol) (PVA) with a molecular weight of 200 kDa (PVA200) was blended with polyurethane (PU) to increase the CO2 solubility, while the addition of silica particles to the PU/PVA blend membranes augmented the CO2 separation performance. The SEM images of the membranes showed that the miscibility of the blend improved by increasing the PVA contents. The membrane containing 10 wt % of PVA200 (PU/PVA200–10) exhibited the highest CO2/N2~32.6 and CO2/CH4~9.5 selectivities among other blend compositions, which increased to 45.1 and 15.2 by incorporating 20 wt % nano-silica particles.


2013 ◽  
Vol 28 (5) ◽  
pp. 485-489
Author(s):  
Mei-Yue SUN ◽  
Lin LI ◽  
Ping-Ping ZHANG ◽  
Jia-Jia XU ◽  
Jiao-Zhu YU ◽  
...  

Author(s):  
Mohd Syafiq Sharip ◽  
Norazlianie Sazali ◽  
Ahmad Shahir Jamaludin ◽  
Mohd Nizar Mhd Razali

2019 ◽  
Vol 44 (37) ◽  
pp. 20914-20923 ◽  
Author(s):  
N. Sazali ◽  
W.N.W. Salleh ◽  
A.F. Ismail ◽  
N.H. Ismail ◽  
N. Yusof ◽  
...  

2014 ◽  
Vol 1025-1026 ◽  
pp. 770-775 ◽  
Author(s):  
W.N.W. Salleh ◽  
N.A.I.M. Isa ◽  
Norazlianie Sazali ◽  
Ahmad Fauzi Ismail

A series of research had been conducted to alter the performance of carbon membranes by manipulating the parameters during the fabrication process. In this study, the effects of carbonization temperature on the performance of carbon membrane were investigated. Matrimid-based carbon membrane supported on ceramic tube was fabricated through the dip-coating technique. The prepared membranes were characterized by using the scanning electron microscopy (SEM) and pure gas permeation test for the study on morphological structure and gas separation performance, respectively. The carbonization process was performed at different carbonization temperatures (600, 700, and 800 oC) for the same heating rate of 1 oC/min under Ar flow. The increment of carbonization temperature produced carbon membrane with small size of pores. The carbon membrane prepared at 800 oC showed the highest CO2/CH4 and CO2/N2 selectivity of 79.65 and 74.76, respectively.


Sign in / Sign up

Export Citation Format

Share Document