Flexural Strengthening with Externally Poured Ultra High Toughness Cementitious Composites

2011 ◽  
Vol 675-677 ◽  
pp. 579-582
Author(s):  
Nan Wang ◽  
Shi Lang Xu

The flexural behavior of reinforced concrete (RC) members strengthened with postpoured Ultra High Toughness Cementitious Composites (UHTCC) was investigated in this paper. The flexural behavior, failure mode and crack propagation during loading process of composite specimens were studied, and their structural behavior was also compared to that of original members. The experimental results showed that post-poured UHTCC materials enhanced flexural bearing capacity and toughness of existing concrete members. And introducing UHTCC material into strengthening enabled the composite specimens sustain the loading at a larger deflection without failure. It also revealed that post-poured UHTCC layer dispersed larger cracks in upper concrete into multiple tightly-spaced fine cracks, which prolonged the appearance of harm surface cracks and improved the durability of existing structures.

2016 ◽  
Vol 860 ◽  
pp. 156-159
Author(s):  
Seyha Yinh ◽  
Qudeer Hussain ◽  
Winyu Rattanapitikon ◽  
Amorn Pimanmas

This experimental study has been conducted on the efficiency of epoxy-bonded hemp fiber reinforced polymer (FRP) composites in flexural strengthening of reinforced concrete (RC) beams. A total of five RC beams were cast and tested up to failure. The test parameters included fiber thickness and strengthening configuration. The experimental results show the capability of hemp FRP composites to increase the loading capacity in flexure of RC beams compared with the un-strengthened beam. The enhancement of ultimate load becomes more significant as the fiber thickness is increased. The effectiveness of strengthened beams in U-wrapped scheme is found greater than strengthened beams in bottom-only scheme. Based on results, it indicates that hemp FRP has a potential to considerably increase the strength and stiffness of the original RC beam.


2017 ◽  
Vol 11 (10) ◽  
pp. 110 ◽  
Author(s):  
Hana Al-Ghanem ◽  
Aya Al-Asi ◽  
Mu’tasim Abdel-Jaber ◽  
Maha Alqam

The current research studies the shear and flexural behavior of reinforced concrete (RC) deep beams strengthened with externally bonded carbon fiber-reinforced polymers (CFRP). Using two types of CFRP composites including sheets and laminates, different configurations for shear and flexural strengthening of deep beams were experimentally investigated. In total, twenty specimens of deep beams with cross-sectional dimensions of 190 mm width, 400 mm depth and an overall length of 1 900 mm were casted and tested to failure. Concerning the cracks’ formation, failure’s modes, ultimate strength and overall stiffness, the performance of the strengthened beams compared to the control beams were evaluated. From the test results, the effectiveness of CFRP technique on enhancing both the shear and flexural capacity of deep beams is verified; however, the efficiency differs variedly depending on the material and the strengthening scheme. Regarding the shear strengthening, using the continuous wrap of two sheets records the highest increase in the ultimate strength with a value exceeds 86% compared only to 36% with the inclined laminates. On the other hand, an enhancement of about 51% is achieved through the flexural strengthening with two layers of sheets and 26% when the laminates are used; both are accompanied by a divergent in the failure mode from flexure to shear. 


2011 ◽  
Vol 71-78 ◽  
pp. 712-716
Author(s):  
An Duan ◽  
Wei Liang Jin

The purpose of this research is to investigate the influence of the freeze-thaw cycles on the flexural behavior of reinforced concrete members. The variation of the concrete stress-strain relationship due to frozen-thawed deterioration was considered. The temperature distribution was calculated based on the heat conduction theory, and the damaged region affected by freeze-thaw cycles was determined. By using Reponse-2000 program, the flexural behaviour of a reinforced concrete slab was analyzed and predicted. The analytical results show that with increase of number of freeze-thaw cycles, the yield moment, the ultimate moment and the curvature ductility decreased, while the relative depth of neutral axis and the midspan deflection increased.


Sign in / Sign up

Export Citation Format

Share Document