Comparison between Roll Diffusion Bonding and Hot Isostatic Pressing Production Processes of Ti6Al4V-SiCf Metal Matrix Composites

2011 ◽  
Vol 678 ◽  
pp. 145-154 ◽  
Author(s):  
Claudio Testani ◽  
F. Ferraro ◽  
Paolo Deodati ◽  
Riccardo Donnini ◽  
Roberto Montanari ◽  
...  

Titanium-metal-matrix composites (Ti-MMC) are materials with very large specific resistance and potential operative temperature up to 800° C. At present these composites are produced by Hot Isostatic Pressing (HIP), a reliable but expensive manufacturing method. To cut production costs, Centro Sviluppo Materiali SpA (CSM) has developed and patented an experimental plant for co-rolling at high temperature sheets of titanium alloy and silicon carbide monofilaments fabrics. The experimental Roll Diffusion Bonding (RDB) pilot plant permits a reduction of process costs of about 40% with respect to the HIP process. This work reports the results of microstructural and mechanical examinations carried out on composites realized by RDB and HIP. The comparison shows that the fibre-matrix interface is stable in both the composites while the mechanical properties of RDB composite are better due to its smaller grain size and high dislocation density.

2022 ◽  
pp. 103411
Author(s):  
Alessandro Sergi ◽  
Raja H.U. Khan ◽  
Sandeep Irukuvarghula ◽  
Martina Meisnar ◽  
Advenit Makaya ◽  
...  

Author(s):  
Karan P S

Abstract: Aluminium alloys are widely utilised in the aerospace and automobile industries due to their low density and strong mechanical qualities, as well as their superior corrosion and wear resistance and low thermal coefficient of expansion as compared to traditional metals and alloys. These material’s superior mechanical qualities and inexpensive production costs make them an appealing alternative for a wide range of scientific and technical applications. In this study, we strive to present a literature review on the overall performance of reinforced composites created by the stir casting method, as well as the effect of process factors on the properties of Aluminium-based MMC. The literature review framework in this paper provides a clear overview that the process parameters play important role for optimum properties of Aluminium based Metal Matrix Composites. As reinforcing elements in Metal Matrix Composites, Boron Carbide and Silicon Carbide play an important role. The MMCs were successfully produced using the liquid metallurgy process. Scanning electron microscopy was used to examine the morphology and microstructure of Al-B4C and Al-SiC composites. The addition of 2, 4 and 6 wt% B4C and SiC particles increased several mechanical parameters such as ultimate tensile strength and hardness. It was also discovered that the mechanical behaviour of B4C particulates AMC is superior to that of SiC particulates AMC. Keywords: Aluminum, Metal matrix composite, SiC, B4C, Tensile test, Hardness test and SEM Analysis.


Author(s):  
I. W. Hall ◽  
A. P. Diwanji

Carbon fiber reinforced metal matrix composites (MMC's) are an attractive class of materials for automotive and aerospace structural applications because of their high strength and stiffness to weight ratios and their low coefficients of thermal expansion. Successful development of these new materials demands a thorough understanding of the structure/property/processing relationships and, in particular, a detailed understanding of the fiber/matrix interface since this region strongly influences the final mechanical properties of the system. This interface is affected by many factors including the manufacturing method, heat treatment, matrix alloy composition and wettability of the fibers but, since it is a region which is typically much less than lμm wide, it is inaccessible to direct detailed observation by any means other than transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document