Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy

2011 ◽  
Vol 686 ◽  
pp. 53-56 ◽  
Author(s):  
Jie Li ◽  
Xian Quan Jiang

The microstructure and mechanical properties of AZ31 magnesium alloys were investigated in this paper. AZ31 magnesium alloys were cryogenically treated at -196°C for 1, 5 and 24 hours, respectively. The results showed the grains of AZ31 were initially refined and grew up with the increase of cryogenic time, the second phase decreased gradually, and the rigidity and tensile strength decreased drastically and then increased. As a result, AZ31 magnesium alloys with 1 hour cryogenic treatment were able to obtain the optimal combination properties.

2011 ◽  
Vol 415-417 ◽  
pp. 1096-1102
Author(s):  
Bo Jian Wang ◽  
Yao Dan Zhang ◽  
Shan Li

In this paper, the microstructure and mechanical properties of refine-grain AZ31 magnesium alloy sheets was investigated upon annealing under different temperature. Plasticity and fracture mechanism of refine-grain AZ31 magnesium alloy sheet was discussed.


2020 ◽  
Vol 39 (1) ◽  
pp. 200-208
Author(s):  
Tao Lin ◽  
Ji-Xue Zhou ◽  
Cai-Nian Jing ◽  
Yun-Teng Liu ◽  
Lin-Lin Zhang ◽  
...  

AbstractFew studies of cryogenic treatment were focused on nonferrous alloys, such as magnesium alloy. In this work, the effect of cryogenic treatment (77 K) before extrusion on microstructure and mechanical properties of ZK60 alloy was investigated. The results showed that many fine G.P. zones were formed during the cryogenic treatment and then grew to short fine {\beta }_{1}^{^{\prime} } precipitates when heating before extrusion. These precipitates pinned dynamic recrystallized grain boundaries in the subsequent extrusion, resulting in fine gains and dispersed spherical precipitates. By the cryogenic treatment before extrusion, the extruded ZK60 alloy showed good tensile strength and elongation balance. Especially, elongation was improved by 29%.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 644
Author(s):  
Wenyan Zhang ◽  
Hua Zhang ◽  
Lifei Wang ◽  
Jianfeng Fan ◽  
Xia Li ◽  
...  

AZ31 magnesium alloy sheets were prepared by low-speed extrusion at different temperatures, i.e., 350 °C, 400 °C, and 450 °C. The microstructure evolution and mechanical properties of extruded AZ31 magnesium alloy sheets were studied. Results indicate that the low-speed extrusion obviously improved the microstructure of magnesium alloys. As the extrusion temperature decreased, the grain size for the produced AZ31 magnesium alloy sheets decreased, and the (0001) basal texture intensity of the extruded sheets increased. The yield strength and tensile strength of the extruded sheets greatly increased as the extrusion temperature decreased. The AZ31 magnesium alloy sheet prepared by low-speed extrusion at 350 °C exhibited the finest grain size and the best mechanical properties. The average grain size, yield strength, tensile strength, and elongation of the extruded sheet prepared by low-speed extrusion at 350 °C were ~2.7 μm, ~226 MPa, ~353 MPa, and ~16.7%, respectively. These properties indicate the excellent mechanical properties of the extruded sheets prepared by low-speed extrusion. The grain refinement effect and mechanical properties of the extruded sheets produced in this work were obviously superior to those of magnesium alloys prepared using traditional extrusion or rolling methods reported in other related studies.


2012 ◽  
Vol 557-559 ◽  
pp. 13-17
Author(s):  
Rong Wang ◽  
Xiu Rong Zhu ◽  
Gang Chen ◽  
Jing Jiang Nie ◽  
Yong Dong Xu ◽  
...  

The effect of different hydrostatic extrusion ratios on the microstructure and mechanical properties of the ZK60 magnesium alloys were investigated. The results showed that, the major deformation mechanism of the alloy is twinning at room temperature, which resulted in that the tensile strengthen and hardness of the extruded alloy improved greatly. With deformation ratio increasing, the ultimate tensile strengthen and hardness are linearly increased, with the functions of Y= 4.2X+358.3 and Y=2.3X +73.69, respectively. And the maximum tensile strength and hardness of the extruded alloy are 383 MPa and 87HB, respectively. But the elongation decreases obviously, the minimum decreasing degree is 50%. With the deformation ratio increasing, the tendency of elongation rate increased as an “M” model.


Author(s):  
Wenxue Fan ◽  
Hai Hao

Abstract Grain refinement has a significant influence on the improvement of mechanical properties of magnesium alloys. In this study, a series of Al–Ti–C-xGd (x = 0, 1, 2, 3) master alloys as grain refiners were prepared by self-propagating high-temperature synthesis. The synthesis mechanism of the Al–Ti–C-xGd master alloy was analyzed. The effects of Al–Ti–C-xGd master alloys on the grain refinement and mechanical properties of AZ31 (Mg-3Al-1Zn-0.4Mn) magnesium alloys were investigated. The results show that the microstructure of the Al–Ti–C-xGd alloy contains α-Al, TiAl3, TiC and the core–shell structure TiAl3/Ti2Al20Gd. The refining effect of the prepared Al–Ti–C–Gd master alloy is obviously better than that of Al–Ti–C master alloy. The grain size of AZ31 magnesium alloy was reduced from 323 μm to 72 μm when adding 1 wt.% Al–Ti–C-2Gd master alloy. In the same condition, the ultimate tensile strength and elongation of as-cast alloy were increased from 130 MPa, 7.9% to 207 MPa, 16.6% respectively.


2011 ◽  
Vol 686 ◽  
pp. 120-124
Author(s):  
Jin Ping Fan ◽  
She Bin Wang ◽  
Bing She Xu

The effects of Sr addition on the mechanical properties and microstructure of Mg-6Al mag- nesium alloy both at 25 °C and at 175 °C were investigated by means of OM, SEM and EDS and XRD. Upon the Sr addition of 2%, the tensile strength was increased by 7.2% to 184.4MPa at 25 °C, while it was increased by 30% to 155.4MPa at 175 °C. The strengthening mechanism of Mg-6Al-xSr at lower temperature (25 °C) was different from that at higher temperature (175°C). The results show that the addition of strontium effectively improved the microstructure and mechanical properties of magnesium alloy.


2011 ◽  
Vol 291-294 ◽  
pp. 1082-1086
Author(s):  
Yao Jin Wu ◽  
Zhi Ming Zhang ◽  
Bao Cheng Li ◽  
Bao Hong Zhang ◽  
Jian Min Yu ◽  
...  

In the present research, the influences of different extrusion ratios (15, 30, 45, 60, and 75) and extrusion temperature (300°C, 330°C, 360°C, 390°C, 420°C) on the mechanical properties and microstructure changes of AZ80 magnesium alloy have been investigated through tensile test and via ZEISS digital metallographic microscope observation. Research indicates that the alloy’s plasticity gradually decreases as the temperature increases, and that the alloy’s tensile strength varies with the extrusion ratio. At 330°C, the alloy’s particle grain is small and a small amount of black hard and brittle second-phase β (Mg17Al12) are precipitated uniformly along the grain boundary causing the gradual increase of the alloy’s tensile strength. When the extrusion temperature is up to 390°C, the grain size increases significantly, but the second phase precipitation along grain boundaries transforms into continuous and uniform-distribution precipitation within the grain. In this case, when the extrusion ratio is 60, the alloy’s tensile strength reaches its peak 390 Mpa. As the extrusion temperature increases, inhomogeneous precipitation of the second-phase along grain boundaries increases, causing the decrease of the alloy’s strength. At the same temperature, both the tensile strength and plasticity increases firstly and then decreases as extrusion ratio increases. With the gradual increase of the refinement grain, the dispersed precipitates increase and the alloy’s tensile strength and plasticity reach their peaks when the extrusion temperature is 390°C. As the grain grows, the second phase becomes inhomogeneous distribution, and the alloy’s strength and plasticity gradually decrease.


Sign in / Sign up

Export Citation Format

Share Document