Texture Evolution of Armco Iron during Accumulative Roll Bonding Process

2011 ◽  
Vol 702-703 ◽  
pp. 177-181
Author(s):  
Erell Bonnot ◽  
François Brisset ◽  
Anne Laure Helbert ◽  
Thierry Baudin

The Armco iron is one of the purest commercial iron with very low levels of carbon, oxygen and nitrogen. In order to improve the mechanical properties, it is worth applying severe plastic deformation to obtain ultrafine-grained bulk materials, with grain size <1µm. In this study, samples of Armco iron were subjected to a technique of severe plastic deformation named Accumulative Roll Bonding (ARB). The important parameter of ARB is the number of cycles and then the von Mises equivalent strain. By means of the Electron BackScattered Diffraction (EBSD) technique, the texture evolution with the number of cycles was studied. The microhardness was also measured in function of the equivalent strain. Finally, the mean grain size and the fraction of high angle grain boundaries were determined as a function of the number of cycles.

2012 ◽  
Vol 706-709 ◽  
pp. 1757-1762
Author(s):  
Erell Bonnot ◽  
François Brisset ◽  
Anne Laure Helbert ◽  
Thierry Baudin

The Armco iron is one of the purest commercial iron with very low levels of carbon, oxygen and nitrogen. In order to improve the mechanical properties, it is worth applying severe plastic deformation to obtain ultrafine-grained bulk materials, with grain size lower than 1 μm. In this study, samples of Armco iron were subjected to a technique of severe plastic deformation named Accumulative Roll Bonding (ARB). This method consists in rolling to 50% two sheets pack of which the stacked surfaces were initially cleaned. Then, the rolled strip is sectioned in two halves, cleaned and stacked again and the procedure of roll-bonding repeated. Practically, the process can be repeated without limits. The important parameter of ARB is the number of cycles and then the consequent number of layers of the final sample. By means of the Electron Backscattered Diffraction (EBSD) technique, the evolution of both microstructure and texture as regard to the number of ARB cycles was studied. The analysis of mean grains size and high angle grain boundaries (HAGB) fraction as a function of the number of cycles showed an early formation of a subgrained structure with low angle boundaries and then the evolution of the microstructure towards an ultrafine-grained structure with an increase of HAGB.


2007 ◽  
Vol 26-28 ◽  
pp. 405-408 ◽  
Author(s):  
Naoki Ishida ◽  
Daisuke Terada ◽  
Keizo Kashihara ◽  
Nobuhiro Tsuji

The sheet of pure Al (99.99%) single crystal having (1 12)[110] orientation was deformed up to equivalent strain of 6.4 by the accumulative roll-bonding (ARB) process. The microstructures and orientation of the single crystal ARB-processed by various cycles were characterized by the EBSP measurement. After 1cycle-ARB process, the crystal was macroscopically subdivided into two matrices (macroscopic grain subdivision). These matrices exhibits two different variants of brass orientation, which are (1 01)[121] and (011)[211]. In addition to the macroscopic grain subdivision, microscopic grain subdivision also occurred within the matrix to form an ultrafine grained structure in the single crystal specimen after high strains.


2007 ◽  
Vol 7 (11) ◽  
pp. 3765-3770 ◽  
Author(s):  
Nobuhiro Tsuji

Recently, it becomes possible to fabricate bulk metals having ultrafine grained or nanocrystalline structures of which grain size is in nano-meter dimensions. One of the promising ways to realize bulk nanostructured metals is severe plastic deformation (SPD) above logarithmic equivalent strain of 4. We have developed an original SPD process, named Accumulative Roll Bonding (ARB) using rolling deformation in principle, and have succeeded in fabricating bulk nanostructured sheets of various kinds of metals and alloys. The ARB process and the nanostructured metals fabricated by the ARB are introduced in this paper. The nanostructured metals sometimes perform quite unique mechanical properties, that is rather surprising compared with conventionally coarse grained materials. The unique properties seem to be attributed to the characteristic structures of the nano-metals full of grain boundaries.


2005 ◽  
Vol 495-497 ◽  
pp. 797-802
Author(s):  
Jan Kuśnierz ◽  
J. Bogucka

The accumulative roll-bonding (ARB) process, invented a few years ago, is a promising mode for introducing severe plastic deformation into industrial practice. The ARB process consists in rolling of the pack of two sheets up to 50 %. Then, the rolled material is sectioned into two halves, stacked and the procedure of roll-bonding is repeated. The orientation distribution of ARB processed Al 98 % up to e ~ 12 is analyzed in the paper. The evolution of crystallographic texture has been discussed in relation with changes of mechanical properties and structure.


Author(s):  
M. T. Pe´rez-Prado ◽  
A. P. Zhilyaev ◽  
L. Jiang ◽  
M. E. Kassner ◽  
O. A. Ruano

Severe plastic deformation (SPD) techniques have now successfully been applied to fabricate a large number of nanostructured metals and alloys. Most studies have so far focused on fcc materials, although some studies on Ti and Mg also exist. In this work we describe the nanostructures resulting from processing pure Zr by high pressure torsion (HPT) and accumulative roll bonding (ARB).


2007 ◽  
Vol 7 (11) ◽  
pp. 3765-3770 ◽  
Author(s):  
Nobuhiro Tsuji

Recently, it becomes possible to fabricate bulk metals having ultrafine grained or nanocrystalline structures of which grain size is in nano-meter dimensions. One of the promising ways to realize bulk nanostructured metals is severe plastic deformation (SPD) above logarithmic equivalent strain of 4. We have developed an original SPD process, named Accumulative Roll Bonding (ARB) using rolling deformation in principle, and have succeeded in fabricating bulk nanostructured sheets of various kinds of metals and alloys. The ARB process and the nanostructured metals fabricated by the ARB are introduced in this paper. The nanostructured metals sometimes perform quite unique mechanical properties, that is rather surprising compared with conventionally coarse grained materials. The unique properties seem to be attributed to the characteristic structures of the nano-metals full of grain boundaries.


2010 ◽  
Vol 667-669 ◽  
pp. 1095-1100
Author(s):  
Nong Gao ◽  
Chuan Ting Wang ◽  
Robert J.K. Wood ◽  
Terence G. Langdon

Various different severe plastic deformation processes (SPD) have been developed to produce ultra-fine grained (UFG) materials during the last two decades. One very important material property that the UFG materials should have for structural materials application is good wear resistance. This review paper presents some recent work related to the wear resistance of materials processed by SPD, in particular for alloys processed by using equal-channel angular pressing (ECAP) and accumulative roll-bonding (ARB).


Author(s):  
Luchian Zaharia ◽  
Radu Comaneci ◽  
Constantin Baciu ◽  
Nicanor Cimpoesu

The main objective of the paper is to present the refinement of grains when aluminum strips are exposed to Severe Plastic Deformation (SPD) by Accumulative Roll-Bonding (ARB). Also, the relationship between nano-grain size and the increase of some mechanical characteristics (yield stress, tensile strength) is investigated. The work presents a theoretical analysis of ARB process taking into account the effect of the initial number of strips stacked before rolling on the strain evolution. We proposed the ARB process analysis when the number of strips initially stacked is 2, 3 and 4 and the initial thickness of each strip before rolling is equal with the thickness of the laminated strip, so the thickness of initial strip is a multiple of thickness resulting from rolling. It is obvious that in the case of rolling with a multilayer initial stacked, each layer will be deformed with a bigger strain, so the bond will be realised easier, at lower working temperature and the grain refinement will be achieved by a smaller number of passes. For each case (2, 3 and 4 initial layers) the engineer and equivalent (von Mises) strain are calculated. From this analysis results that increasing the number of strips initially stacked increases the total strain and the grain size from the laminated strip achieve submicronic values after a smaller pass number. The micro-structural investigations, made with Atomic Force Microscope (AFM), show that nanometric grain appear at 5–6 equivalent strain for 2 initial stacked strips and at 3–4 equivalent strain for 4 initial stacked strips. The stress – strain curves for each case and evolution of yield stress, tensile strength and micro-hardness with the number of passes are presented.


Sign in / Sign up

Export Citation Format

Share Document