The Evaluation of Strain, Microstructural Aspects and Some Mechanical Properties of Nano-Grained Aluminum Processed by Accumulative Roll Bonding Using 2, 3 and 4 Initial Strips

Author(s):  
Luchian Zaharia ◽  
Radu Comaneci ◽  
Constantin Baciu ◽  
Nicanor Cimpoesu

The main objective of the paper is to present the refinement of grains when aluminum strips are exposed to Severe Plastic Deformation (SPD) by Accumulative Roll-Bonding (ARB). Also, the relationship between nano-grain size and the increase of some mechanical characteristics (yield stress, tensile strength) is investigated. The work presents a theoretical analysis of ARB process taking into account the effect of the initial number of strips stacked before rolling on the strain evolution. We proposed the ARB process analysis when the number of strips initially stacked is 2, 3 and 4 and the initial thickness of each strip before rolling is equal with the thickness of the laminated strip, so the thickness of initial strip is a multiple of thickness resulting from rolling. It is obvious that in the case of rolling with a multilayer initial stacked, each layer will be deformed with a bigger strain, so the bond will be realised easier, at lower working temperature and the grain refinement will be achieved by a smaller number of passes. For each case (2, 3 and 4 initial layers) the engineer and equivalent (von Mises) strain are calculated. From this analysis results that increasing the number of strips initially stacked increases the total strain and the grain size from the laminated strip achieve submicronic values after a smaller pass number. The micro-structural investigations, made with Atomic Force Microscope (AFM), show that nanometric grain appear at 5–6 equivalent strain for 2 initial stacked strips and at 3–4 equivalent strain for 4 initial stacked strips. The stress – strain curves for each case and evolution of yield stress, tensile strength and micro-hardness with the number of passes are presented.

2011 ◽  
Vol 702-703 ◽  
pp. 177-181
Author(s):  
Erell Bonnot ◽  
François Brisset ◽  
Anne Laure Helbert ◽  
Thierry Baudin

The Armco iron is one of the purest commercial iron with very low levels of carbon, oxygen and nitrogen. In order to improve the mechanical properties, it is worth applying severe plastic deformation to obtain ultrafine-grained bulk materials, with grain size <1µm. In this study, samples of Armco iron were subjected to a technique of severe plastic deformation named Accumulative Roll Bonding (ARB). The important parameter of ARB is the number of cycles and then the von Mises equivalent strain. By means of the Electron BackScattered Diffraction (EBSD) technique, the texture evolution with the number of cycles was studied. The microhardness was also measured in function of the equivalent strain. Finally, the mean grain size and the fraction of high angle grain boundaries were determined as a function of the number of cycles.


2007 ◽  
Vol 534-536 ◽  
pp. 1381-1384
Author(s):  
Seong Hee Lee ◽  
Si Young Chang ◽  
Sung Tag Oh

The effect of working temperature on microstructure and mechanical properties of ultrafine grained monolithic Al and Al-5vol.%SiCp composite processed by accumulative roll bonding (ARB) was studied. The ARB was performed up to eight cycles (an equivalent strain of ~6.4) without lubricant. The working temperature was varied from ambient temperature to 200 C. The samples processed at temperatures below 100C exhibited an ultrafine grained structure over almost all regions. However, the samples processed at 200C showed an inhomogeneous structure in which a few coarse grains due to an occurrence of conventional recrystallization is partially seen. The tensile strength of both the monolithic Al and the composite decreased with increasing the ARB working temperature. The variation of microstructure and mechanical properties of the composite with the working temperature was compared to that of the monolithic aluminum.


2007 ◽  
Vol 539-543 ◽  
pp. 2849-2852
Author(s):  
Cha Yong Lim ◽  
Seung Zeon Han ◽  
Seong Hee Lee

The accumulative roll bonding (ARB) process is one of the methods to refine the grain size of metallic materials. The ARB process up to 8 cycles was performed for the pure Cu and Cu- Fe-P (PMC-90) alloy at ambient temperature under no lubricant conditions. In the pure Cu, the nano-sized grains were formed after third cycle with an average grain size of 200nm. Once the 200 nm grains formed, further reduction in the grain size was not observed up to the 8 ARB process cycles. On the other hand, the formation of the stable nano-sized grains in PMC-90 alloy was retarded compared to the pure Cu due to the alloying elements. For both alloys, the tensile strength values increased drastically in the initial stage of ARB process. The tensile strength values of both alloys tended to saturate after the third ARB process cycle. The tensile elongation value greatly decreased by 1 cycle of ARB process due to the strain hardening. After the third cycle of ARB process, each alloy showed a gradual increase in tensile elongation due to the dynamic recovery. For PMC-90 alloy, the strength value is higher than that of OFC due to addition of the alloying elements.


2019 ◽  
Vol 53 (28-30) ◽  
pp. 3951-3961 ◽  
Author(s):  
AF Meselhy ◽  
MM Reda

To manufacture high-strength, fine dispersed and uniform distribution of Al-5 vol.% SiC composite, accumulative roll bonding process is proposed and applied through this study. The microstructure illustrates and validates a good distribution of SiC reinforced in the Al 1050 matrix. It is found that after eight pass, the mean grain size of the composite sample is 188 nm. It can be concluded from tensile test that by increasing the number of passes the strengths of both Al ARBed and composite samples increase; however, their ductility decreases at the initial accumulative roll bonding pass and then increases. The tensile strength of Al-SiC composite sample is greater than the annealed Al 1050 used as the original raw material by five times. The strengthening of the proposed composite sample occurs due to grain refinement, uniformity, reinforcing role of particles, strain hardening, bonding quality and size of particles. From the hardness test, it is concluded that, after the initial pass, hardness increased quickly, then dwindled and finally saturated by further rolling. Observations discovered that the failure mode in the composite occurs due to the shear fracture. From the experimental investigation, governing equations are derived to describe the effect of the number of accumulative roll bonding passes on the tensile strength and elongation of manufactured metal matrix composite materials. It is found that the tensile strength and elongation can be described as an exponential function of the number of passes. Numerical results from these equations are more consistent with the experimental investigation.


2008 ◽  
Vol 22 (18n19) ◽  
pp. 2833-2939 ◽  
Author(s):  
S. M. FATEMI-VARZANEH ◽  
A. ZAREI-HANZAKI ◽  
M. HAGHSHENAS

This work conducted to investigate the effects of accumulative roll bonding (ARB) method on achieving the ultra-fine grain microstructure in AZ31 alloy. Accordingly, a number of ARB routes at 400°C, applying thickness reductions per pass of 35%, 55%, and 85% were performed. The results indicate that both the final grain size and the degree of bonding have been dictated by the thickness reduction per pass. The larger pass reductions promote a higher degree of bonding. Increasing the total strain stimulates the formation of a more homogeneous ultra fine grain microstructure.


2020 ◽  
Vol 979 ◽  
pp. 84-88
Author(s):  
A. Arun ◽  
Lakshmanan Poovazhgan

Accumulative Roll Bonding (ARB) is one among the techniques in Severe Plastic Deformation (SPD) which is used to produce ultrafine grains and nanocrystalline structure in the materials used. Tensile test, micro hardness test, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and bending tests are the various tests carried out to understand the grain refinement of ARB materials. ARB is carried out in homogenous and heterogeneous materials to bring out the useful applications of ultrafine grained materials. ARB process mainly carried out in room, warm and hot temperature. The variations in the structure of the material are obtained by changing the load applied on the roller and by increasing the number of passes. This review paper brings out how the mechanical properties of the materials are improved by ARB process


2019 ◽  
Vol 54 (10) ◽  
pp. 1259-1271 ◽  
Author(s):  
Medhat Elwan ◽  
A Fathy ◽  
A Wagih ◽  
A R S Essa ◽  
A Abu-Oqail ◽  
...  

In the present study, the aluminum (Al) 1050–FeTiO3 composite was fabricated through accumulative roll bonding process, and the resultant mechanical properties were evaluated at different deformation cycles at ambient temperature. The effect of the addition of FeTiO3 particle on the microstructural evolution and mechanical properties of the composite during accumulative roll bonding was investigated. The Al–2, 4, and 8 vol.% FeTiO3 composites were produced by accumulative roll bonding at room temperature. The results showed improvement in the dispersions of the particles with the increase in the number of the rolling cycles. In order to study the mechanical properties, tensile and hardness tests were applied. It was observed that hardness and tensile strength improve with increasing accumulative roll bonding cycles. The microhardness and tensile strength of the final composites are significantly improved as compared to those of original raw material Al 1050 and increase with increasing volume fraction of FeTiO3, reaching a maximum of ∼75 HV and ∼169 MPa for Al–8 vol.% FeTiO3 at seventh cycle, respectively.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5171
Author(s):  
Xueran Liu ◽  
Limin Zhuang ◽  
Yonghao Zhao

Recently, the accumulative roll bonding (ARB) technique has made significant progress in the production of various ultrafine-grained (UFG) metals and alloys. In this work, a UFG copper sheet was produced by ARB and subsequent annealing at 300 °C for 60 min to optimize strength and ductility. It was found that homogeneous lamellar UFG materials with a thickness of 200–300 nm were formed after six ARB passes. The microhardness and tensile strength of as-ARBed Cu increased, while the ductility and strain hardening decreased with the cumulative deformation strain. The as-ARBed specimens fractured in a macroscopically brittle and microscopically ductile way. After annealing, discontinuous recrystallization occurred in the neighboring interface with high strain energy, which was prior to that in the matrix. The recrystallization rate was enhanced by increasing the cumulative strain. UFG Cu ARBed for six passes after annealing manifested a completely recrystallized microstructure with grain sizes approximately ranging from 5 to 10 μm. Annealing treatment reduced the microhardness and tensile strength but improved the ductility and strain hardening of UFG Cu. As-annealed UFG-Cu fractured in a ductile mode with dominant dimples and shear zones. Our work advances the industrial-scale production of UFG Cu by exploring a simple and low-cost fabrication technique.


Sign in / Sign up

Export Citation Format

Share Document