New Model for Twin-Variant Selection in Hexagonal Alloys

2011 ◽  
Vol 702-703 ◽  
pp. 229-232
Author(s):  
Christophe Schuman ◽  
L. Bao ◽  
J.S. Lecomte ◽  
M.J. Philippe ◽  
Y. Zhang ◽  
...  

A new selection criterion to explain the activation of the twinning variant is proposed. This criterion is based on the calculation of the deformation energy to create a primary twin. The calculation takes into account the effect of the grain size using a Hall-Petch type relation. This criterion allows to obtain a very good prediction for the variant selection. The calculations are compared with the experimental results obtained on T40 (ASTM grade 2) deformed by Channel Die compression.

Author(s):  
Longhui Mao ◽  
Chuming Liu ◽  
Yingchun Wan ◽  
Tao Chen ◽  
Shunong Jiang ◽  
...  

Author(s):  
Fabricio S. Silva ◽  
Ricardo A. Medronho ◽  
Luiz Fernando Barca

Oil production facilities have choke/control valves to control production and protect downstream equipment against over pressurization. This process is responsible for droplets break up and the formation of emulsions which are difficult to treat. An experimental study of water in oil dispersion droplets break up in localized pressure drop is presented. To accomplish that, an apparatus simulating a gate valve was constructed. Droplet Size Distribution (DSD) was measured by laser light scattering. Oil physical properties were controlled and three different break up models were compared with the experimental results. All experimental maximum diameters (dmax) were above Kolmogorov length scale. The results show that dmax decreases with increase of energy dissipation rate (ε) according to the relation dmax ∝ ε−0.42. The Hinze (1955, AIChE J.1, 3, 289–295) model failed to predict the experimental results, although, it was able to adjust reasonably well those points when the original proportional constant was changed. It was observed that increasing the dispersed phase concentration increases dmax due to turbulence suppression and/or coalescence phenomenon. Turbulent viscous break up model gave fairly good prediction.


2011 ◽  
Vol 13 (10) ◽  
pp. 928-932 ◽  
Author(s):  
Lei Bao ◽  
Christophe Schuman ◽  
Jean-Sébastien Lecomte ◽  
Marie-Jeanne Philippe ◽  
Xiang Zhao ◽  
...  

2007 ◽  
Vol 129 (4) ◽  
pp. 677-689 ◽  
Author(s):  
Lapo F. Mori ◽  
Neil Krishnan ◽  
Jian Cao ◽  
Horacio D. Espinosa

In this paper, the results of experiments conducted to investigate the friction coefficient existing at a brass-steel interface are presented. The research discussed here is the second of a two-part study on the size effects in friction conditions that exist during microextrusion. In the regime of dimensions of the order of a few hundred microns, these size effects tend to play a significant role in affecting the characteristics of microforming processes. Experimental results presented in the previous companion paper have already shown that the friction conditions obtained from comparisons of experimental results and numerical models show a size effect related to the overall dimensions of the extruded part, assuming material response is homogeneous. Another interesting observation was made when extrusion experiments were performed to produce submillimeter sized pins. It was noted that pins fabricated from large grain-size material (211μm) showed a tendency to curve, whereas those fabricated from billets having a small grain size (32μm), did not show this tendency. In order to further investigate these phenomena, it was necessary to segregate the individual influences of material response and interfacial behavior on the microextrusion process, and therefore, a series of frictional experiments was conducted using a stored-energy Kolsky bar. The advantage of the Kolsky bar method is that it provides a direct measurement of the existing interfacial conditions and does not depend on material deformation behavior like other methods to measure friction. The method also provides both static and dynamic coefficients of friction, and these values could prove relevant for microextrusion tests performed at high strain rates. Tests were conducted using brass samples of a small grain size (32μm) and a large grain size (211μm) at low contact pressure (22MPa) and high contact pressure (250MPa) to see whether there was any change in the friction conditions due to these parameters. Another parameter that was varied was the area of contact. Static and dynamic coefficients of friction are reported for all the cases. The main conclusion of these experiments was that the friction coefficient did not show any significant dependence on the material grain size, interface pressure, or area of contact.


2010 ◽  
Vol 160-162 ◽  
pp. 1787-1790
Author(s):  
Jing Cao ◽  
Yong Feng Wang ◽  
Chun Xue Wei

1J79 alloy was prepared by vacuum electric arc smelting.The crystal growth and the content of impurity was observed by electron probe microanalyzer,and magnetic properties were measured by vibrating sample magnetometer(VSM).Experimental results show that inclusions in the alloy are fewer and fewer, composition becomes more uniform with the increases of the Mo content, and grain size also becomes larger and larger with the increases of Mo content, to reduce coercivity. The small amount of Mo addition is useful to improve the saturation magnetization and reduce coercivity.


2011 ◽  
Vol 189-193 ◽  
pp. 3191-3197
Author(s):  
Qiu Lian Dai ◽  
Can Bin Luo ◽  
Fang Yi You

In this paper, metal-bonded diamond wheels of different sized abrasive grain with different porosity were fabricated. Grinding experiments with these wheels on three kinds of materials were carried out under different grinding conditions. Experimental results revealed that wheel with high porosity (38%) had smaller grinding forces and specific energy than the one with a medium porosity (24%) on grinding G603. However, on grinding harder materials like Red granite or ceramics of Al2O3, the wheel with 38% porosity had bigger grinding forces and specific energy than the wheel with 24% porosity. Both wheels exhibited good self-sharpening capability during the grinding process of G603 and Red granite, but on grinding ceramics of Al2O3 the wheel with 38% porosity displayed in dull state during the grinding process . With the same porosity, the grinding forces of the wheel with a grain size of 230/270 US mesh were lower than the one with a grain size of W10 when grinding Red granite and ceramics of Al2O3. However revising results were obtained on grinding G603.


2011 ◽  
Vol 391-392 ◽  
pp. 524-529 ◽  
Author(s):  
Wen Liang Chen ◽  
Chun Ping Huang ◽  
Li Ming Ke

Carbon nanotubes(CNTs) reinforced copper matrix composites were successfully produced by Friction Stir Processing (FSP). The effect of applying multiple FSP passes on the forming of composites was studied, the microstructure, microhardness and conductivity of the good forming composite were analyzed. The experimental results showed that CNTs uniformly distributed and good forming composite can be obtained by three FSP passes. Compared to the parent material, the grain size of the composite has significantly refined, and the microhardness of the composite has also greatly improved, but the conductivity of the composite has a small decrease.


2019 ◽  
Vol 33 (26) ◽  
pp. 1950313
Author(s):  
Li-Na Wang ◽  
Xing-Yu Zhao ◽  
Yi-Neng Huang

The Debye relaxation of dielectric spectroscopy exists extensively in monohydroxy alcohols, and the existing theory of the dielectric strength is obviously inconsistent with the experimental results. In this paper, we propose an Ising model of infinite free-rotating pseudospin chains and get the exact solution of the dielectric strength versus temperature. The model predictions are qualitatively consistent with the experimental results, especially the crossover from the low to the high-temperature Curie–Weiss law. The quantitative comparisons indicate that the model predictions can agree well with the experimental data below 250 K.


Sign in / Sign up

Export Citation Format

Share Document