Study of the Size Effects and Friction Conditions in Microextrusion—Part II: Size Effect in Dynamic Friction for Brass-Steel Pairs

2007 ◽  
Vol 129 (4) ◽  
pp. 677-689 ◽  
Author(s):  
Lapo F. Mori ◽  
Neil Krishnan ◽  
Jian Cao ◽  
Horacio D. Espinosa

In this paper, the results of experiments conducted to investigate the friction coefficient existing at a brass-steel interface are presented. The research discussed here is the second of a two-part study on the size effects in friction conditions that exist during microextrusion. In the regime of dimensions of the order of a few hundred microns, these size effects tend to play a significant role in affecting the characteristics of microforming processes. Experimental results presented in the previous companion paper have already shown that the friction conditions obtained from comparisons of experimental results and numerical models show a size effect related to the overall dimensions of the extruded part, assuming material response is homogeneous. Another interesting observation was made when extrusion experiments were performed to produce submillimeter sized pins. It was noted that pins fabricated from large grain-size material (211μm) showed a tendency to curve, whereas those fabricated from billets having a small grain size (32μm), did not show this tendency. In order to further investigate these phenomena, it was necessary to segregate the individual influences of material response and interfacial behavior on the microextrusion process, and therefore, a series of frictional experiments was conducted using a stored-energy Kolsky bar. The advantage of the Kolsky bar method is that it provides a direct measurement of the existing interfacial conditions and does not depend on material deformation behavior like other methods to measure friction. The method also provides both static and dynamic coefficients of friction, and these values could prove relevant for microextrusion tests performed at high strain rates. Tests were conducted using brass samples of a small grain size (32μm) and a large grain size (211μm) at low contact pressure (22MPa) and high contact pressure (250MPa) to see whether there was any change in the friction conditions due to these parameters. Another parameter that was varied was the area of contact. Static and dynamic coefficients of friction are reported for all the cases. The main conclusion of these experiments was that the friction coefficient did not show any significant dependence on the material grain size, interface pressure, or area of contact.

Author(s):  
Gap-Yong Kim ◽  
Muammer Koc ◽  
Jun Ni

Application of microforming in various research areas has received much attention due to the increased demand for miniature metallic parts that require mass production. For the accurate analysis and design of microforming process, proper modeling of material behavior at the micro/meso-scale is necessary by considering the size effects. Two size effects are known to exist in metallic materials. One is the “grain size” effect, and the other is the “feature/specimen size” effect. This study investigated the “feature/specimen size” effect and introduced a scaling model which combined both feature/specimen and grain size effects. Predicted size effects were compared with experiments obtained from previous research and showed a very good agreement. The model was also applied to forming of micro-features by coining. A flow stress model for Type 304 stainless steel taking into consideration the effect of the grain and feature size was developed and implemented into a finite element simulation tool for an accurate numerical analysis. The scaling model offered a simple way to model the size effect down to length scales of a couple of grains and extended the use of continuum plasticity theories to micro/meso-length scales.


Author(s):  
Anahita Emami ◽  
Seyedmeysam Khaleghian ◽  
Chuang Su ◽  
Saied Taheri

Good understanding of friction in tire-road interaction is of critical importance for vehicle dynamic control systems. Most of the friction models proposed to describe the friction coefficient between tire-treads and road surfaces have been developed based on empirical or semi-empirical relations that are not able to include many effective parameters involved in the tire-road interactions. Therefore, these models are just useful in limited conditions similar to the experiments, and do not accurately represent tire-road traction in numerical tire models. However, in last two decades, a few theoretical models have been developed to calculate the tire-road friction coefficient theoretically by considering both viscoelastic behavior of tire tread compounds and multi-scale interactions between tire treads and rough road surfaces. In this article, a novel physics-based model proposed by Persson has been investigated and used to develop computer algorithms for calculation of sliding friction coefficient between a tire tread compound and a rough substrate. The viscoelastic behavior of tread compound and the surface profile of rough counter surface are the inputs of this physics-based theoretical model. The numerical results of the model have been compared with the experimental results obtained from a dynamic friction tester designed and built in the Center for Tire Research (CenTire). Good agreement between numerical results of theoretical model and experimental results has been found at intermediate range of slip velocities considering the effect of adhesion and shearing in the real contact area in addition to hysteresis friction due to internal energy dissipation in the tire tread compound.


2006 ◽  
Vol 129 (3) ◽  
pp. 470-476 ◽  
Author(s):  
Gap-Yong Kim ◽  
Jun Ni ◽  
Muammer Koç

For the accurate analysis and design of microforming process, proper modeling of material behavior at the micro/mesoscale is necessary by considering the size effects. Two size effects are known to exist in metallic materials. One is the “grain size” effect, and the other is the “feature/specimen size” effect. This study investigated the feature/specimen size effect and introduced a scaling model which combined both feature/specimen and grain size effects. Predicted size effects were compared with three separate experiments obtained from previous research: a simple compression with a round specimen, a simple tension with a round specimen, and a simple tension in sheet metal. The predicted results had a very good agreement with the experiments. Quantification of the miniaturization effect has been achieved by introducing two parameters, α and β, which can be determined by the scaling parameter n, to the Hall–Petch equation. The scaling model offers a simple way to model the size effect down to length scales of a couple of grains and to extend the use of continuum plasticity theories to micro/mesolength scales.


Author(s):  
F. Alisafaei ◽  
Seyed Hamid Reza Sanei ◽  
E. J. Smith ◽  
Chung-Souk Han

Nanoindentation tests at the nano-micrometer scales are conducted to investigate the depth and time dependent deformation mechanisms of polydimethylsiloxane (PDMS). Astonishing indentation size effects observed in these experiments are analyzed with an existing theoretical hardness model, and the effects of loading time on the hardness and indentation stiffness of PDMS are studied. The change in the indentation recovery with respect to indentation depth and loading time are analyzed. Furthermore, it is shown that the stiffness of PDMS obtained at the maximum applied force can be efficiently applied to validate the applied theoretical hardness model with the experimental results.


2011 ◽  
Vol 26 (22) ◽  
pp. 3742-3751 ◽  
Author(s):  
C. R. JAMELL ◽  
R. S. DECCA

We provide a formalism to calculate the effect of the finite size of the sample on hypothetical Yukawa-like corrections to the Newtonian gravitational potential. It is explicitly shown that finite size effect contributions are negligible when the extent of the sample is larger than the range of the Yukawa term. In particular we show that these contributions are small in the configuration of a recent experiment. In the experiment a gold coated sphere was moved across the interface between two materials with different mass densities. In view of these new experimental results, we analyze the situation when the error on the hypothetical correction could result to be significant.


2001 ◽  
Vol 695 ◽  
Author(s):  
J. G. Swadener ◽  
E. P. George ◽  
G. M. Pharr

ABSTRACTExperiments were conducted in annealed iridium using pyramidal and spherical indenters over a wide range of load. For a Berkovich pyramidal indenter, the hardness increased with decreasing depth of penetration. However, for spherical indenters, hardness increased with decreasing sphere radius. Based on the number of geometrically necessary dislocations generated during indentation, a theory that takes into account the work hardening differences between pyramidal and spherical indenters is developed to correlate the indentation size effects measured with the two indenters. The experimental results verify the theoretical correlation.


2005 ◽  
Vol 494 ◽  
pp. 113-120 ◽  
Author(s):  
R.A. Andrievski

Size effects in nanostructured (nanocrystalline, nanophase or nanocomposite) materials (NMs) and their stability are of great importance for fundamental considerations and modern practice. The size effect peculiarities in NMs are analyzed and the complex influence of grain size and other factors on NM properties is emphasized. New approaches in the development of thermostable NMs are considered with a special attention to the importance of the reproducibility of NM structures and properties.


2016 ◽  
Vol 723 ◽  
pp. 207-213
Author(s):  
You Juan Ma ◽  
Xiao Wang ◽  
Qing Qian ◽  
Zong Bao Shen

The occurrence of size effects in the microforming leads to the uncertainties in process determination and quality control. In this research, a series of experiments were conducted in UTM4104 testing machine to investigate the grain size effect and feature size effect in micro-bending. Different grain size (d), thickness to grain size ratio () and micro-mold feature size (W) were prepared to explore size effects on formability of copper foil. The formability characterized by forming depth, deformation uniformity and surface integrity was discussed. It was found that the normalized forming depth presented a gradually rise and then declined markedly when N value further decreased to 0.79. The ductile fracture mode was observed for all grain-sized workpiece and the corresponding limit forming depth decreased with increasing grain size. Besides, the thickness thinning distribution and microhardness distribution showed the similar variation tendency like M. Both the standard deviation of thickness reduction and the roughed degree of surface topography indicated the worsening deformation uniformity of the foils with a larger grain size. The inhomogeneous plastic flow of material may be the reason to explain the depression near fracture location which is only observed in coarse-grained workpiece. Overall, it is concluded that the fine-grained copper exhibited better formability as the coarse-grained workpiece experienced severe strain incompatibility.


2006 ◽  
Vol 976 ◽  
Author(s):  
XiaoDong Hou ◽  
T.T. Zhu ◽  
N. M. Jennett ◽  
A. J. Bushby

AbstractMethods to obtain tensile stress-strain properties of materials from a practically non-destructive indentation test are of great industrial interest. However, to do this successfully, indentation size effects must be accounted for. Many indentation size effects, such as strain gradient plasticity and micro-pillar experiments [1], show a size dependence proportional to the inverse square root of a length scale, in common with Hall-Petch behavior. Recently, however, the indentation size effect from small radius spherical indenters has been shown, for a range of fcc metals, not to follow a Hall-Petch-like relationship but to be proportional to the inverse cube root of indenter radius [2]. Here, we investigate these differences further and present results for the indentation size effect with spherical indenters on Cu samples that have been engineered to have different grain sizes. The important experimental control parameter of the relative size of the indentation compared to the grain size is also explored since the cross over from grains significantly smaller than the contact radius to grains significantly larger than the contact radius occurs at different length scales in each sample. A thorough understanding of the various length-scale effects in the different test methods (e.g. the indentation size effect and grain size effect in indentation), is essential if a relationship, robust enough for industrial application, is to be defined to obtain tensile properties from an essentially non-destructive indentation test.


Sign in / Sign up

Export Citation Format

Share Document