Effect of Boron on the Amorphization of Fe-Si Alloys by Mechanical Alloying

2012 ◽  
Vol 730-732 ◽  
pp. 739-744 ◽  
Author(s):  
Petr Urban ◽  
Francisco Gomez Cuevas ◽  
Juan M. Montes ◽  
Jesus Cintas

The amorphization process by mechanical alloying in the Fe-Si alloy system has been studied. High energy ball milling has been applied for alloys synthesis. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to monitor the structural and phase transformations through the different stages of milling. The addition of amorphous boron in the milling process and the increase of the milling time were used to improve the formation of the amorphous phase. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of equilibrium intermetallic compounds.

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2332
Author(s):  
Ahmad Mamoun Khamis ◽  
Zulkifly Abbas ◽  
Raba’ah Syahidah Azis ◽  
Ebenezer Ekow Mensah ◽  
Ibrahim Abubakar Alhaji

The purpose of this study was to improve the dielectric, magnetic, and thermal properties of polytetrafluoroethylene (PTFE) composites using recycled Fe2O3 (rFe2O3) nanofiller. Hematite (Fe2O3) was recycled from mill scale waste and the particle size was reduced to 11.3 nm after 6 h of high-energy ball milling. Different compositions (5–25 wt %) of rFe2O3 nanoparticles were incorporated as a filler in the PTFE matrix through a hydraulic pressing and sintering method in order to fabricate rFe2O3–PTFE nanocomposites. The microstructure properties of rFe2O3 nanoparticles and the nanocomposites were characterized through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The thermal expansion coefficients (CTEs) of the PTFE matrix and nanocomposites were determined using a dilatometer apparatus. The complex permittivity and permeability were measured using rectangular waveguide connected to vector network analyzer (VNA) in the frequency range 8.2–12.4 GHz. The CTE of PTFE matrix decreased from 65.28×10−6/°C to 39.84×10−6/°C when the filler loading increased to 25 wt %. The real (ε′) and imaginary (ε″) parts of permittivity increased with the rFe2O3 loading and reached maximum values of 3.1 and 0.23 at 8 GHz when the filler loading was increased from 5 to 25 wt %. A maximum complex permeability of 1.1−j0.07 was also achieved by 25 wt % nanocomposite at 10 GHz.


2012 ◽  
Vol 05 ◽  
pp. 496-501 ◽  
Author(s):  
S. SHEIBANI ◽  
S. HESHMATI-MANESH ◽  
A. ATAIE

In this paper, the influence of toluene as the process control agent (PCA) and pre-milling on the extension of solid solubility of 7 wt.% Cr in Cu by mechanical alloying in a high energy ball mill was investigated. The structural evolution and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The solid solution formation at different conditions was analyzed by copper lattice parameter change during the milling process. It was found that both the presence of PCA and pre-milling of Cr powder lead to faster dissolution of Cr . The mean crystallite size was also calculated and showed to be about 10 nm after 80 hours of milling.


1993 ◽  
Vol 8 (2) ◽  
pp. 307-313 ◽  
Author(s):  
K. Aoki ◽  
A. Memezawa ◽  
T. Masumoto

An intermetallic compound c–NiZr and a mixture of elemental powders of nickel and zirconium [Ni50Zr50 (at. %)] have been mechanically ground (MG) and mechanically alloyed (MA), respectively, using a high-energy ball mill in various atmospheres. The products were characterized by x-ray diffraction, transmission electron microscopy, differential scanning calorimetry, and chemical analysis as a function of milling time. An amorphous a–NiZr alloy was prepared by both MG and MA in an argon atmosphere. By MG of NiZr, an amorphous nitride a–NiZrN0.15 was synthesized in a nitrogen atmosphere, while a crystalline hydride c–NiZrH3 was formed in a hydrogen atmosphere. On the other hand, ZrN and ZrH2 were formed by MA in a nitrogen and a hydrogen atmosphere, respectively. The amorphization reaction was observed between ZrH2 and Ni by further MA in a hydrogen atmosphere, and a mixture of a–NiZrxHy (x < 1) and ZrH2 was obtained. However, no amorphization was observed by MA between ZrN and Ni in a nitrogen atmosphere. The effects of the milling atmosphere on the phase formations during MG and MA are discussed based on the gas absorption rate.


2021 ◽  
Vol 876 ◽  
pp. 7-12
Author(s):  
Petr Urban ◽  
Fátima Ternero Fernández ◽  
Rosa M. Aranda Louvier ◽  
Raquel Astacio López ◽  
Jesus Cintas Físico

The effect of milling time on the microstructure evolution and formation of amorphous phase of Ti60Si40 alloy produced by mechanical alloying (MA) has been investigated. Laser diffraction, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) were employed to characterize the particle size, morphology and structure of mechanically alloyed Ti60Si40. When the milling time is increased to 20 h, the particle size decreases from 23.7 to 4.7 μm, the shape of the particles changes to spherical and the crystalline structure is transformed into an amorphous phase. The amorphous Ti60Si40 alloy is stable when heating up to 750oC. Above this temperature, the cold crystallization of the intermetallic compounds Ti5Si3 and/or Ti5Si4 begins.


2005 ◽  
Vol 498-499 ◽  
pp. 331-336 ◽  
Author(s):  
R. Muccillo ◽  
L. Franchi ◽  
J.T. Santos ◽  
I.C. Cosentino ◽  
E.N.S. Muccillo

Strontium ferrites powders were obtained by high energy milling process after calcinations of iron oxide and barium carbonate. Phase formations and crystallite size was determined using X-ray diffraction. Morphology, particle size and agglomeration stages were analyzed using scanning and transmission electron microscopy. Results show particles in the range of 14 to 40 nanometers, large agglomerates and crystalline phases formation.


2018 ◽  
Vol 54 ◽  
pp. 136-145
Author(s):  
A. El Mohri ◽  
M. Zergoug ◽  
K. Taibi ◽  
M. Azzaz

Nanocrystalline Fe90Mg10 alloy samples were prepared by mechanical alloying process using planetary high energy ball mill. The prepared powders were characterized using differential thermal analysis (DTA), X-ray diffraction technique (XRD) at high temperature, transmission electron microscopy (TEM), and the vibrating sample magnetometer (VSM). Obtained results are discussed according to milling time. XRD at high temperature results also indicated that when the milling time increases, the lattice parameter and the mean level of grain size increase, whereas the microstrains decrease. The result of the observation by the TEM of the Fe-Mg powders prepared in different milling time, coercive fields derived and Saturation magnetization derived from the hysteresis curves in high temperature are discussed as a function of milling time.


2013 ◽  
Vol 203-204 ◽  
pp. 272-275
Author(s):  
Marek Krasnowski ◽  
Tadeusz Kulik

An elemental powder mixture corresponding to the Al3Ni2 phase stoichiometry was subjected to mechanical alloying in a high-energy ball mill. Products of this process after various milling times were investigated by differential scanning calorimetry. The phase transformations occurring in the material throughout milling and during heating in a calorimeter were investigated by X-ray diffraction method. This study revealed that a metastable nanocrystalline NiAl intermetallic phase was formed during the mechanical alloying process. Heating of the synthesised powders in the calorimeter caused phase transformations, the product of which was an equilibrium Al3Ni2 intermetallic phase or a mixture of NiAl, Al3Ni2 and Al3Ni intermetallic phases, depending on the milling time and the temperature up to which the material was heated.


2014 ◽  
Vol 216 ◽  
pp. 283-287 ◽  
Author(s):  
Cristina Daniela Stanciu ◽  
Traian Florin Marinca ◽  
Florin Popa ◽  
Ionel Chicinaş ◽  
Olivier Isnard

Fe-Si alloy with a Si content of 10 wt. % was obtained in nanocrystalline state by mechanical alloying of elemental iron and silicon powders. The mechanical alloying process was carried out in a high energy ball mill (Fritsch, Pulverisette 4) in argon atmosphere. The X-ray diffraction (XRD) studies indicated that after 4 hours of milling the Fe-Si alloy is formed. The mean crystallites size decreases down to 7 nm after 8 hours of milling. The particles morphology investigated by scanning electron microscopy (SEM) showed an evolution during milling process from two different kinds of particles to a one kind of particles with irregular shape. The magnetisation of powders decreases upon increasing the milling time up to 4 hours as a consequence of the Fe-Si alloy formation.


2004 ◽  
Vol 449-452 ◽  
pp. 249-252 ◽  
Author(s):  
Jung Il Lee ◽  
Tae Whan Hong ◽  
Il Ho Kim ◽  
Soon Chul Ur ◽  
Young Geun Lee ◽  
...  

High silicon Al-Si alloy powders having nanocrystalline structures have been produced by mechanical alloying process. Microstructures in mechanically alloyed Al-Si powders were investigated by scanning electron microscopy and transmission electron microscopy. X-ray diffraction analyses were also carried out to characterize lattice constant, crystallite size and misfit strain. Effective milling time for the formation of nanocrystalline microstructure was thought to be approximately 12 hours, and the sizes of Al and Si crystallites in mechanically alloyed powders after longer than 12 hours of milling were reduced to about 30nm and 70nm respectively, in Al-70 mass% Si alloy system. The misfit strains increased with milling time up to 240 hours, and saturated to 5.73×10-3 and 4.39×10-3 for Al and Si crystallites, respectively.


2016 ◽  
Vol 17 ◽  
pp. 1-6
Author(s):  
M. Abo-Elsoud

High-energy ball-milling in hexane medium was employed to prepare Nobel Zr-based bulk metallic glasses (BMGs) alloy of three different nominal compositions Zr47Be23Ni15Ti15, Zr50Be20Ni15Ti15 and Zr52Be18Ni15Ti15, numbers indicate at.%). The glass forming ability was found to increase with decreasing Zr and increasing Be content, which can be ascribed to the enhanced atomic size mismatch of the constituents on Be addition. Amorphous Zr47Be23Ni15Ti15 powder undergoes two-stage crystallization with onset temperatures at 640 and 700 K and glass transition temperature Tg at 566 K. In contrast, the Zr50Be20Ni15Ti15 and Zr52Be18Ni15Ti15 samples remained crystalline to a certain extent even after prolonged milling and contained FCC Zr crystallites. Structural characterization was done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In addition, thermal analyses were performed by means of differential scanning calorimetry (DSC) thermogram to justify the experimental findings.


Sign in / Sign up

Export Citation Format

Share Document