Calculating Chinese Human Toxicity Potential Factors of Heavy Metals in Water for Material Industry

2013 ◽  
Vol 743-744 ◽  
pp. 475-479
Author(s):  
Hong Tao Wang ◽  
Xian Zheng Gong ◽  
Feng Gao ◽  
Bo Xue Sun ◽  
Chen Li ◽  
...  

With the development of materials industry, the problem of water pollution is increasingly serious, and therefore it is important to establish an appropriate characterization model of heavy metals in water in China. This paper provides the human toxicity potential factors of several heavy metals, including Hg, Cd, Cr, Pb and As. The result showed that Chinas HTP factors are partial greater than Europe factors, caused by the different industrial situation and the ratio of total human intake to total emissions.

2019 ◽  
Vol 209 ◽  
pp. 1274-1284 ◽  
Author(s):  
Marcelo Girotto Rebelato ◽  
Andréia Marize Rodrigues ◽  
André Gustavo de Brito Thomaz ◽  
Luciana Maria Saran ◽  
Leonardo Lucas Madaleno ◽  
...  

2016 ◽  
Vol 22 (5) ◽  
pp. 731-743 ◽  
Author(s):  
Robin Harder ◽  
Gregory M. Peters ◽  
Magdalena Svanström ◽  
Stuart J. Khan ◽  
Sverker Molander

2018 ◽  
Vol 12 (2) ◽  
pp. 27 ◽  
Author(s):  
Fajar Marendra ◽  
Anggun Rahmada ◽  
Agus Prasetya ◽  
Rochim Bakti Cahyono ◽  
Teguh Ariyanto

A B S T R A C TProducing biogas by anaerobic digestion (AD) is a promising process that can simultaneously provide renewable energy and dispose solid waste safely. However, this process could affect environment e.g. due to greenhouse gas emissions. By life cycle assessment (LCA), we assessed the environmental impact (EI) of an integrated fruit waste-based biogas system and its subsystems of Biogas Power Plant Gamping. Data were collected from an actual plant in Gamping, Sleman, Yogyakarta, Indonesia that adopted a wet AD process at mesophilic condition. The results showed that the global warming potential (GWP) emission of the system reached 81.95 kgCO2-eq/t, and the acidification potential (AP), eutrophication potential (EP), human toxicity potential (HTPinf) and fresh water ecotoxicity (FAETPinf) emissions were low. The EI was mainly generated by two subsystems, namely, the electricity generation and the digestate storage. A comparison analysis showed that the GWP become the main contributor of environmental loads produced by Biogas Plant Gamping, Suazhou Biogas Model, Opatokun Biogas Model, Opatokun Pyrolisis Model, dan Opatokun Integrated System Anaerobic Digestion and Pyrolisis. The GWP impact control and reduction could significantly reduce the EI of the system. It has been shown that improving the technology of the process, the electricity generation and the digestate storage will result in the reduction of EI of the biogas system.Keywords: environmental impact; fruit waste; life cycle assessment (LCA); renewable energyA B S T R A KProduksi listrik dari biogas dengan anaerobic digestion (AD) merupakan proses yang menjanjikan karena dapat menghasilkan energi listrik dan penanganan limbah padat dengan aman. Namun, proses ini mempengaruhi lingkungan akibat emisi gas rumah kaca. Penilaian dampak lingkungan (environmental impact atau EI) sistem biogas berbasis limbah terpadu dan subsistemnya terhadap Biogas Power Plant Gamping (BPG) dilakukan dengan metode life cycle assesement atau LCA. Data dikumpulkan dari plant yang sebenarnya di Gamping, Sleman, Yogyakarta, Indonesia yang mengadopsi proses AD basah pada kondisi mesofilik. Potensi pemanasan global (global warming potential atau GWP) dari sistem mencapai 81,95 kgCO2-eq/t, sedangkan potensi keasaman (acidification potential atau AP), potensi eutrofikasi (eutrophication potential atau EP), potensi toksisitas manusia (human toxicity potential atau HTPinf) dan ekotoksisitas air (fresh water ecotoxicity atau FAETPinf) potensi emisinya cukup rendah. Potensi EI terutama dihasilkan oleh dua subsistem, yaitu, pembangkit listrik dan penyimpanan digestate. Analisis perbandingan menunjukkan bahwa dampak GWP menjadi kontributor utama dari beban lingkungan yang dihasilkan oleh Biogas Plant Gamping, biogas model Suazhou, biogas model Opatokun, model pirolisis Opatokun, serta model integrasi AD dan pirolisis Opatokun. Pengendalian dan pengurangan dampak GWP secara signifikan dapat mengurangi EI dari sistem. Telah terbukti bahwa peningkatkan teknologi proses, pembangkit listrik dan penyimpanan digestate akan menghasilkan pengurangan EI dari sistem biogas.Kata kunci: dampak lingkungan; energi terbarukan; life cycle assessment (LCA); limbah buah


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Dongping Liu ◽  
Jian Wang ◽  
Huibin Yu ◽  
Hongjie Gao ◽  
Weining Xu

Abstract Background Heavy metal pollution of aquatic systems is a global issue that has received considerable attention. Canonical correlation analysis (CCA), principal component analysis (PCA), and potential ecological risk index (PERI) have been applied to heavy metal data to trace potential factors, identify regional differences, and evaluate ecological risks. Sediment cores of 200 cm in depth were taken using a drilling platform at 10 sampling sites along the Xihe River, an urban river located in western Shenyang City, China. Then they were divided into 10 layers (20 cm each layer). The concentrations of the As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were measured for each layer. Eight heavy metals, namely Pb, Zn, As, Cd, Cr, Cu, Ni, and Hg, were measured for each layer in this study. Results The average concentrations of the As, Cd, Cu, Hg, and Zn were significantly higher than their background values in soils in the region, and mainly gathered at 0–120 cm in depth in the upstream, 0–60 cm in the midstream, and 0–20 cm downstream. This indicated that these heavy metals were derived from the upstream areas where a large quantity of effluents from the wastewater treatment plants enter the river. Ni, Pb, and Cr were close or slightly higher than their background values. The decreasing order of the average concentration of Cd was upstream > midstream > downstream, so were Cr, Cu, Ni and Zn. The highest concentration of As was midstream, followed by upstream and then downstream, which was different to Cd. The potential factors of heavy metal pollution were Cd, Cu, Hg, Zn, and As, especially Cd and Hg with the high ecological risks. The ecological risk levels of all heavy metals were much higher in the upstream than the midstream and downstream. Conclusions Industrial discharge was the dominant source for eight heavy metals in the surveyed area, and rural domestic sewage has a stronger influence on the Hg pollution than industrial pollutants. These findings indicate that effective management strategies for sewage discharge should be developed to protect the environmental quality of urban rivers.


Cosmetics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 78
Author(s):  
Claire Tubia ◽  
Alfonso Fernández-Botello ◽  
Jan Dupont ◽  
Eni Gómez ◽  
Jérôme Desroches ◽  
...  

As an external appendage, hair is exposed to multiple stresses of different origins such as particles and gases in air, or heavy metals and chemicals in water. So far, little research has addressed the impact of water pollution on hair. The present study describes a new ex vivo model that allowed us to document the adverse effects of water pollutants on the structure of hair proteins, as well as the protective potential of active cosmetic ingredients derived from a biomimetic exopolysaccharide (EPS). The impact of water pollution was evaluated on hair from a Caucasian donor repeatedly immersed in heavy metal-containing water. Heavy metal retention in and on hair was then quantified using Inductively Coupled Plasma Spectrometry (ICP/MS). The adverse effects of heavy metals on the internal structure of hair and its prevention by the EPS were assessed through measurement of keratin birefringence. Notably, the method allows the monitoring of the organization of keratin fibers and therefore the initial change on it in order to modulate the global damage in the hair. Results revealed an increasing amount of lead, cadmium and copper, following multiple exposures to polluted water. In parallel, the structure of keratin was also altered with exposures. However, heavy metal-induced keratin fiber damage could be prevented in the presence of the tested EPS, avoiding more drastic hair problems, such as lack of shine, or decrease in strength, due to damage accumulation.


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Elvis Umbu Lolo ◽  
Richardus Indra Gunawan ◽  
Agerippa Yanuranda Krismani ◽  
Yonathan Suryo Pambudi

The problem faced by the tofu industry is waste management. So, it is necessary to do so that tofu waste does not pollute the environment by managing waste and emissions, efficient consumption of energy, materials, andwater. One way to identify environmental pollution is by Life Cycle Assessment. This study uses the Life Cycle Assessment (LCA) method. The LCA flow in this study is to determine goals and scopes, create inventory data, make grouping impacts and how much impact they generate, as well as interpreting to provide improvements. The functional unit in this study is 1 kg of tofu which is produced in 1 day. The results of this study were divided into five impact categories, namely, climate change, the most important being 2195 kg CO2, human toxicity potential at 2187 kg 1,4-Dikchloro benzene, eutrophication at 0.935 kg PO4, photo oxidant at 0.797 kg C2H4, and acidification at 15,915 kg. SO2. The recommended improvement alternative is to make efforts to use water efficiently during the tofu production process, including the need to clean the scale in the steam boiler to increase the volume of steam produced, so that the use of water and energy is more efficient.


Sign in / Sign up

Export Citation Format

Share Document