The Influence of High-Energy Ball Milling and Sintering Process on the Microstructure and Mechanical Properties of Al-Ni-Y-Co-La Alloy

2013 ◽  
Vol 745-746 ◽  
pp. 281-285
Author(s):  
Y.B. Yuan ◽  
Rui Xiao Zheng ◽  
Su Jing Ge ◽  
Han Yang ◽  
Chao Li Ma

Al86Ni7Y4.5Co1La1.5 (at.%) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated and extruded by using vacuum hot press sintering under different process conditions, sintering temperature, extrusion pressure, sintering time, etc.. The microstructure and morphology of the powder and consolidated bulk alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The phase transformation of the powder was investigated by differential scanning calorimetry (DSC). Mechanical properties of the consolidated bulk alloy were examined. The results showed that as the milling time increase, the volume fraction of amorphous materials and the hardness and yield strength of the bulk alloy were obvious improved.

2010 ◽  
Vol 150-151 ◽  
pp. 1163-1166 ◽  
Author(s):  
Xiao Fei Wang ◽  
Xiao Lan Cai

CNT-reinforced aluminum matrix composites was produced by high-energy ball milling, the effect of rotary speed and milling time on the particle size distribution,the density and hardness of CNT-aluminum matrix composites were studied,it was observed that the rotary speed and milling time have an important effect on the mechanical properties of the CNT-aluminum matrix composites.


2013 ◽  
Vol 669 ◽  
pp. 149-153
Author(s):  
Xiao Lan Cai ◽  
Zheng Li ◽  
Qing Jun Wang

High energy ball milling was used to preparation SiC/Al composites flakes. The research found the milling parameter of high energy milling was the ball/powder ration is 20:1, the rotary speed is 800 r/min, the milling time is 100min.Also researched the molding process of SiC/Al composites, the change of grain size and the weight fraction of the SiC, The research also found the mechanical properties of SiC/Al composites affected by the molding process. It was found that to reduce particle size and increasing of weight fraction of SiC, tensile strength of the SiC/Al composites increased. When the weight fraction of SiC in the SiC/Al composites is about 16%, the mechanical properties of SiC/Al composites about the hardness and tensile strength also get the high-point, the hardness and tensile strength is about 95HB and 248MPa.


10.30544/629 ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 1-13
Author(s):  
Jovana Ruzic ◽  
Marko Simić ◽  
Nikolay Stoimenov ◽  
Dušan Božić ◽  
Jelena Stašić

Metal matrix composites (MMCs) belong to a group of modern materials owing to their excellent technological, mechanical, and physical properties such as excellent wear and corrosion resistance, high electrical and thermal conductivity, improved strength and hardness. Final properties of MMCs are affected equally by all steps of its manufacturing process. It is shown that by using adequate process parameters to obtain starting materials (reaching the specific size, shape, and reactivity) the control of volume fraction and distribution of reinforcements within the matrix can be achieved. For this purpose, mechanical alloying has been appointed as a good approach. MMCs can be produced using powder metallurgy, ingot metallurgy, and additive manufacturing techniques. Combining high-energy ball milling with these techniques enables the design of an innovative processing route for MMCs manufacturing. Mechanochemical process (achieved using high-energy ball milling) was employed in three manufacturing procedures: hot pressing, compocasting, and laser melting/sintering for obtaining of the suitable powder. These production routes for MMCs manufacturing were the subject of this work. The aim of MMCs design is to establish an optimal combination of production techniques merged into the cost-effective fabrication route for obtaining MMCs with required properties.


Sign in / Sign up

Export Citation Format

Share Document